PRECIOUS METAL DEPOSITS ASSOCIATED WITH VOLCANIC ENVIRONMENTS IN THE SOUTHWEST

Larry J. Buchanan
Fischer-Watt Mining Co., Inc., 550 E. Plumb, Suite 203, Reno, Nevada 89502

ABSTRACT

A comparative study of over 60 precious metal vein deposits hosted by volcanics indicates that ubiquitous physico-chemical features relate to the genesis of, and exploration for, these deposits. Host rocks are largely Tertiary calc-alkaline extrusions with hypabyssal intrusions. Andesites are the more common host to ore shoots, however most districts have preore felsic tuffs, volcanogenic sediments, dikes, sills, and plugs. The deposits fill fractures often related to a caldera environment. The veins are vertically zoned from agate and clay near the paleosurface, passing with depth into barren calcite; then quartz and calcite; then quartz, calcite, adularia and precious metals; then in deeper levels to quartz, adularia and base metals. The interface between the upper precious metals and the lower base metals is a level of episodic boiling of the fluids. At this level, CO2 and H2S are released to the vapor phase, pH rises in the remaining fluid, temperature drops slightly, and $f(0_2)$ increases. These results of boiling cause first the base metals, then the silver sulfide, and later the gold to deposit in a well-recognized temporal and vertical sequence. Episodic sealing of the fracture system, followed by episodic refracturing causes episodic boiling and mineral deposition at depths greater than hydrostatic conditions would allow, and yields the intra-mineralization brecciation and banded vein fillings so often observed in epithermal deposits. A low pH alteration assemblage, genetically related to the precious metal deposition, is nearly always present. This assemblage extends from the base of the precious metal ore horizon to the paleosurface, thus it serves as an excellent guide to non-outcropping ore shoots.

INTRODUCTION

This paper will present data on epithermal deposits hosted by volcanics and will discuss the metal deposition mechanisms. A model will be presented of a "typical" deposit, describing vertical and horizontal patterns of wall rock alteration, mineralization, levels of ore deposition, and chemical and physical ore controls.

The study will limit itself to only those gold-silver vein deposits in an unmetamorphosed volcanic to subvolcanic environment. These deposits have been called "epithermal", "bonanza ores", "precious metal deposits of volcanic association", and by other names. These names are all slightly misleading in that most of the deposits were formed from solutions hotter than the 200°C limit set by Lindgren (1933) as the upper temperature of "epithermal", certainly only a few districts were "bonanzas", and it is not at all clear just what the association is between the veins and the host

volcanics (especially as many ore shoots are in sedimentary rocks below a volcanic cover). As the word "epithermal" is so widely used and is now generally understood to refer more to a genetic-class rather than a temperature-class of deposits, the word "epithermal" will be retained in this report. With the limitation of discussing only deposits in a volcanic environment, some major precious metal districts (Coeuer D'Alene, Carlin, Leadville, Concepcion Del Oro, etc.) will not be discussed, although some of the ideas to be presented may apply equally to these.

DATA BASE FOR THE MODEL

Table 1 gives physical and chemical characteristics of 60 epithermal districts. The compilation reveals several important common characteristics, features too often present to be relegated to mere coincidence:

- A. The host is typically an Early to Late Tertiary calc-alkaline volcanic pile commonly containing andesite agglomerates, dikes, breccias and flows; rhyolite tuffs, dikes and small plugs; latite and rare dacite flows and breccias; lake bed and fluvial volcanogenic sandstones and shales. Although andesites are the more common host to ore (Silberman, 1976), most districts have some felsic units. Felsic intrusions are usually late in the volcanic event but are preore. Many field geologists feel a genetic tie exists between the mineralization and the felsic intrusions, with the intrusions acting as a heat source to drive cells of convecting water. Much more study is required to confirm this. Basalts are not known to host significant amounts of ore in any of the districts in Table 1.
- B. Sediments or weakly metamorphosed sediments with typically Late Cretaceous to Early Tertiary intrusions often underlie the volcanics. These underlying rocks less commonly host ore shoots, but when ore does occur, it often contains more of a base metal assemblage than the precious metal deposits in overlying volcanics. Limestone replacement deposits adjacent to the deeper veins are not uncommon.
- C. Only a few deposits are older than Tertiary: Rochester is believed to be Cretaceous and the Golden Plateau deposits are thought to be Paleozoic. On the other hand, many are younger than Tertiary. There is little geological reason why deposits cannot have formed throughout the Phanerozoic, however the older deposits are commonly either eroded away or metamorphosed to the point they no longer exhibit epithermal characteristics.
- D. The deposits fill pre-existing fractures, not necessarily tension fractures, and where studied in detail, most deposits can be placed in a caldron or resurgent caldron setting. The fractures are

	MATTO RATIO	1:2 to 10:1	2:1 to 4:1	1:2 to 2:1	. ta	1:1 to 1:3		REFERENCES	SCHKADER (1909) RANSONE (1923) CLIFTON & OTHERS (1960) PERSONAL STUDY (1960)	DREIR (1976) THORRIDE (1951) FRIENCH & HAWES (1966) GEYRE & OTHERS (1963)	MHITEBREAD (1976) MASTIN (1923) MASES & KLEINBAPT. (1970) ROBBAN (1969) PERSONAL STUDY (1980)	1980) 53) 964) TUY (1977-80)	SPURK (1905) SAYLOR (1973) HOLAN (1935) RAILEY (ver. comm., 1981) BURGES (1909) COUCH & CARPENTER (1943)	
	SILICIC	ж	ж	×	н	н		REP	SCHRADER (1909) RANSCHEE (1923) CLIPTON & OTHER PERSONAL STUDY	DREIER (19 THORNBURG FRIEDRICH GRYNE & OT	WHITEBREAD (1976) BASTIN (1923) ALBERS & KLEINMANTL (19 BONSHAN (1969) PERSONAL STUDY (196	BUCHANAN (1980) GROSS (1975) ANTUNEZ (1964) PERSONAL STUDY (SPURK (190 TAYLOR (193 NOLAN (193) FAHLEY (ver BURGESS (1)	
S	ALUMITIC	ж	ON.	ж	Dig.	NO.			STRUC- LLITIC LLITIC WITH CO ON	D TO STRINGERS IN THAN ON, BASE PARAGEN-	E DEEP WITH ZEGLIT- OCKS	NI NI	VITHI O ON FOR AGE AND	
ALTERATION ASSEMBLACES	PHYLLIC	X IIIItee	*	×	milite.	*		COMPENTS	SOME MINERALIZED STRUC- TINES DIP SOUTH RARE ALINITE IN ILLITIC CAPS CAPS BORIZON DUED WITH RICHER AS:AM RATIO ON FRINGES OF DISTRICT	VEINS PINCH UPWARD TO CALCITE 6 QUARTZ STRINGERS AND ARE 50° COCIER TRAN THAN IN ORE HORIZON, BASE WETLLS EARLY IN PARAGEN- ESIS	Th From Ore Sample deep In Vein System Veine Associated with Caldera Complex, Zeciit- Ization Of Wallrocks	BASE PETALS ARE BELOW THE LEVEL OF BOILING WITH PRECIOUS PETALS ABOVE, BASE PETALS ARE PARACEN- ETICALLY EARLY	ORE HORIZON DOMED WITH BIGGER ASAN RATIO ON FRINCES; TD = 240 FOR PRECIOUS METAL STACE AND 265 FOR BASE METALS	
ERATION A	ARGILLIC	92	н	м	*	×			SOME HI TURES D RARE ALI CAPS ORE HOR RIGHER A	VEINS P CALCITE AND ARE THAN IN HETALS ESIS	Th FROM IN VEIN VEINS AS CALDERA IZATION REPORTED	BASE PETALS AR LEVEL OF BOILT PRECIOUS PETALS BASE PETALS AR ETICALLY EARLY	ORE HORI HIGHER A FRINCES: FRECTOU	
ALT	POTASSIC	9	*	08	×	н		VEIN VEIN VIDTHS	AVE. 2 2 MAX. 20	AVE. 1,1 MAX. 45	AVE. 2.5 5.0 4.2	001	11	
	PROPERITIC PO	*	*	н	ж	*		ATTITUDES	N40-45W 70-80 N	N45-90M 405-90 N00-20E 70M-90 N50E 60S-60N	1905 45E	N-S to N45H 45-70M to 45-70E	и70Е, 70-90М	TRICTS
	OF VEIN	Ad, Se, El, rare Py, Ch	Qt, Bb, Rc, Ca, Se, Ch, Qp, Ar	Qt. Ca. Ar. Au, Py. Cp. Sp. Rc. Ra. Fl.	QC, Ca, Py, Ag, Ch, Se, At, Na, Nb, Cp, Sp	Qc, Ca, Se, Rb, Py, Cp, Sn, Ne, As, Rc, Rs, P1		ORE EXTENT	310	909	019	959	185	TABLE 1: COPPARISON OF EPITHERHAL DISTRICTS
	g °	832	Sp., Sp.	Rb, Ac Gn, Sp	5.27.9	P. P		HORPHS APTER CALCITE	×	н	*	ж	×	FOR ARM
1	AGE	HIOCENE	PLIO,7	13.7 to 12.6 m. y.	28.4 n. y.	19.1 P. y.		120				N N	N	P TARIE
	HAJOR	HIDCENE LA- IITE, RAY. DIKES & TOPP	HIO, -PLIO, ANDESITE, DACITE, RHYGLITE DIKES	NE LTE	OLICOCENE ANDES., RHY., LATITE; BO- CENE RED BEDS; CRET.	MI OCENE ANDES. PLOMS. RHYOLITE TUPPS	Transact.	ZORATION	NONE	BASE PETALS INCREASE VITH DEPTH	NONE	BASE HETALS INCREASE WITH DEPTH	BASE HETALS INCREASE WITH DEPTH	E 1: CO
		HIOCE TITE, DIKES	MO, -PLIO ANDESITE, DACITE, RHYOLITE DIKES	HI OCENE ANDES I TR	OLIGOCENE ANDES., R LATITE; B CENE RED BEDS; CRE	ANDES. F. RHYOLITE TUPPS	1	(8)	220	200 to 250	250 to 300	230	240 and 265	SPP IAS
	TONNACE #10 ⁶	3.8	100.0	19.3	APPROX.	8,80		SALIN-				UNDER	UNDER 1	
	METALS 7 (3)	۰	3.5	UNDER 1	URPER- 0 DEEP- 10	UNDER		FLUTD INCLUSION DATA (6)	YES, CO, RELEASE?	TES AT VEIN TOPS		YRS	TES 3	
GRADE (2)	Auzak	2,6:1	1:200	1123 50 1140	1:200	1:80 to 1:110	ING							
CRAD	0x/T	0.17	15.0	6.9	11.0	20.7	TOR AC	VERY FINE- GRAINED QUARTZ	*	SOFE	м	SOFE	×	
	0z/T	0.58	90.0	.0 0,43	\$0.0	.0 0,23	EVIDENCE OF BOILING	WITH FLAT BOTTONS (5)	н	н	н	м	м	
PRODUCTION	(1) Ag 0z.	8.0	1500.0	200.0	815.0	174.0	M			u		9	9	
PROC	(1)	2.2	. 6.2	8.3	3,55	1.86		CAP TO CAP TO	X 4111fe	X phyllic	clays	x phyllic	* phyllic	
	DISTRICT	CATHAN, HOHAVE CO., ARIZOMA	PACHUCA, HIBALGO, PEXICO	CONSTOCK, STOREY CO., NEVADA	GUANAJUATO, GUANAJUATO, NEXICO	TOHOPAH, NYE CO., NEVADA		DISTRICT	OATSAN, MOKAVE CO., ARIZONA	PACINGA, HIDALGO, HEXI CO	CONSTOCK, STOREY CO., NEVADA	CUANAJUATO, CUANAJUATO, PEXICO	TONOFAH, NYE CO., NEVADA	

ORE SHOOT	ALUNITIC SILICIC RATIO Hor:Vert	K		3:1 NO? X FOR 16:1 VEIN	н н	ж ж ж	н н н	ж н н	м м м	X X X X X X X X X X X X X X X X X X X			
ALIENATION ASSESSMENT	ARGILLIC PHYLLIC A	н		*		fin Ser				W K K K K K	X X NOT X KAOIII Sericite X X NOT X X NOT CONSENTS	X X NOT X X NOT X X NOT X X X X NOT X X X X NOT X X X X X X X X X X X X X X X X X X X	X X NOT THE STREET OF STRE
	PROPYLITIC POTASSIC ARC	NO NO	*		н	X X X X Yeek Adulatia	x x y y y y y y y y y y y y y y y y y y	x x quark	X X Vesk adularia T T TUDES VEXIV VEXIV TUDIS EAX.	X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x	WEIN K WITH K WI	A SECTION SECT
	OF VEIN	Qt. Se. Ks. Rb. Au, Py. Fs. Te. Be. Go. Al, Tl.	Ad, Qt., Ca, Rb, Ar, El, Ba, Fy, Sp, Cp, Ga, Ag, 81		Ad, Qt, Ca, Ba, Ch, Se, Ar, An, Fl, Si, Ch, Sp, Ag, Py, Rc, Te, Pa, Py, Rc, Te,	Ad QC, Co, Ba, May My, Ba, Sp, Ba, My, Ba, Ma, Co, My, Ba, Ma, Co, My, Ma, Ma, Ma, Ma, Ma, Ma, Ma, Ma, Ma, Ma	Ad QC, Cc, Bs. Co, Ss, Ar, An, As, Pr, Se, Te, Pr, St, Go, Sp, Pr, Re, Pr, Ad, QC, Au, Fl, Ad, QC, Au, Fr, As,	Ad Qt, Ca, Ba, Ra, Ca, Ca, Ba, Ra, Ca, Ca, Ra, Ra, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca, C	Ad, QC, Cc, Be, Ad, QC, Cc, Be, Ad, QC, Cc, Be, Ad, Py, Rc, Tc, Py, Rc, Tc, Py, Rc, Tc, Py, Rc, Rc, Rc, Rc, Rc, Rc, Rc, Rc, Rc, Rc	Ad. QC, Ca, Ba, Gb, Sa, Ar, Aa, Aa, Fr, Ca, Ad. QC, Au, Fr, Fr, Aa, Fr, Fr, Fr, Aa, Fr,	Ad, QC, Co, Ba, Ch, St, Ar, An, Ag, Py, Ec, Te, Ad, QC, Au, Fl, Py, Ad, Ra, Co, Ad, QC, Au, Rb, Ad, QC	Ad, QC, Co, Ba, (A, QC, Co, Ba, (A, Sa, Ar, Au, Fl, (A, A, Ru, Fl, (A, Au, Fl,	Ad. QC, Co, Ba. (A, Se, Ar, Au, Fl. Ad. QC, Ca, Ba. Ad. QC, Au, Fl. Ad. QC, Au, Fl. Ad. QC, Au, Rb. Ad. QC,
	HOSTS AGE	HOCENE 21.0 DACITE AND m. y.	HIOFLIO. LATITE, RHY- OLITE, TRACHTE, FORM		OLIGOCENE ANDESTTE AND ANDESTTE AND TUFF	CENE LITE AND LITE AND LAKE LAKE LAKE LAHYO- LAHYO- DRITE	0	8 "1 "1	9 "1 18	No No No	THE THE WAY THE	NO NO NO TO NO NO TO NO NO TO NO	5 78 78 7 88 7 88 7 88 7 88 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8
٦	HASE TORMOR HETALS #106	UNDER OVER	1-4 4.6		5 3.3	-			0.01 12.7 0.01 12.7 APPROX. 7.5 A2.5 ELUD SALIN- ANALOGO (7)	80 8		- 4	7 4
	Oz/I Oz/I AuiAg METALS	HU 1:E C.0 67.0	0.03 8.03 1:243 1	0.08 25.1 1:400		0.02 1:0.2	0.02 1:0.2	0.02 1:0.2 2.6 1:47	0,02 1:0.2 0,02 1:0.2 DRILING OR PINEL OUNKEY OUNKEY	5 2.8 1142 0 20 20110.2 0 201100 0 201100 0 201100 0 201100	5 2.8 1142 0 2 5011RG 0 2 5011RG 0 2 5011RG 0 2 5011RG 0 3 501 8 50 50 50 50 50 50 50 50 50 50 50 50 50	0.00 1:0.2 1:0.2 0.00 1:0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00	OF 21.6 116.7 OF SOLING VERY F108- QUARTE A COUNTY X X X X X X X X X X X X X X X X X X X
	Au Oz. Ag Oz. A	4.2 1.65 0	0.19 36:96	0.14 81.8 0		0.84 0.26	0.26 0.26 . APPROX,	APP 6	O S S S S S S S S S S S S S S S S S S S	APPE 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	0.84 0. 0.154 0. 0.15 0. 0.15 0. 0.15 0. 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.84 0. 0.13 479400. A779 0.13 6.00. A779 0.13 7	APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. APPROX. X X X X X X X X X X X X X X X X X X
TO T	DISTRICT	GOLDFIELD, ESPERALDA CO.,	SILVER PEAK, ESHERAIDA CO., NEVADA	CREEDE, HINERAL CO., COLORADO		ROUND HOUNTAIN, NYE CO., NEVADA							

TOOR CHOOSE			2:1 to 4:1					REFERENCES	ALBERS & KLETHIANPL (1970) ROSS (1961) SILBERAN & HOKEE (1974) COUCH & CARPENTER (1943)	ROBERTS & OTHERS (1971) CRANCER & OTHERS (1957) ROTT (1931) SIRDEVAN (1913)	GRANCER & OTHERS (1957) ROBERTS & OTHERS (1971)	ALBERS & KLEINBAPPL (1970) CORNALL & KLEINBAPPL (1964) RANSOEE & OTHERS (1910)	ROBENTS & OTHERS (1971) GRANCER & OTHERS (1957) SCHRADER (1923)	
	STLICIC	×	*	×	*	н	L			ROBER CRANG ROTT SIRDE	ROBER	-	CRAN	1
	PHYLLIC ALUNITIC				×			m	ASSOCIATED WITH CALDERA COUPLEX, AB PRODUCTION IS APPROX. SOME SHOOTS WITH FLAT TOPS	Y NEAR	NATED IN	GRADES ARE APPROXIMATED, GRES INSTIDE ARCITLIC HALO, VEINS ASSOC, WITH CALDERA	CINATED	
SSEMBLACE	PHYLLIC	X Sericite	н	Close to		ж		COMPENTS	TED WITH	SAID TO BE CHALKY ORE SHOOTS	ORE TARGELY OCIDIZED, SOPE ORE DISSERGANTED IN HOST ROCKS	ARE APPROUSIDE ARGI	RDCH ADULARIA IN VEINS, GRADES ARE APPROXIMIED	
ALTERATION ASSEMBLACES	ARGILLIC	×	*	X Close to ore	X Assoc. w/	*	L		ASSOCIA' COMPLEX APPROX. SOME OR TOPS	SAID TO	ORE LAI SOME ON HOST R	GRADES ORRS IN VEINS	HUCH AL	1
ALTE	POTASSIC			9		X aduleria	YAN	WEIN WIDTHS	24	6.4	9,0	8	10	4
	PROP'MLITIC POT	н	н	н		*	Nam	ATTITUDES	N40-50E 45-60S N60-80E	N30-60W 65N-90	N78E 83N	N60E 70W N-S N30E	"Northerly" w/ west dips. N to MM, 80E	
	-	Qt, Au, Ar, Ag, Py, Na, Ca	Py, Ag,	Ch. Ar.	3.5	fa, Se,	BETCAL	ORE EXTENT	1307	183		0VER 124	280	
3	OF VEIN (4)	Ad, Qt, A	Ad. Qr. A	Rb, Py, I	Ad, Qt.	Ad, Qt, Au, Rb, Ar, Cp, El, Ba, Py, Fl, Na, Se, Ca, Il							*	1
	200	10.0 co 12.5 m. y.	15.0 m. y.	15.0 m. y.	9.0	14.0 m. y.		HORPES AFTER	*	*		*		-
	HOSTS	HOGENE QUARTZ LA- TITE, ANDES. FLOMS AND BRECCIAS	HIOCENE RHYOLITE FLOWS (7) AND ANDES, FLOWS	TERTIARY ANDES. PLUG, RHYOLITE	HIOCENE RHYOLITE BRECCIAS AND FLOAS	MIOCENE RHYOLITE ASH, FLOMS, BRECCIAS		OC ZORATION (8)						
-	x10°	6.83	5.0	0.031	0.29	0.89		-NIN-						
	HETALS TO		under 1	0	UNDER 0.1	o		FLUID INCLUSION DATA (6)			4			
L	Au:Ag	1:14	1115	1:68	11.8 to 1:16	113	ING			N .				1
GRADE (2)	Ag Dz/T	30.0	9.4	24.6	3.0	1.4	DP BOIL	CRAINED GRAINED QUARTZ	H	SOS		*	м	
	T/ZO	2.24	0.31	0.43	0.34	0,49	EVIDENCE OF BOILING	VITH FLAT		н	н		*	
TION	Ag 02.	20.11	1.63	0.762	0.874	1.28	M							4
PRODUCTION	Δυ Θε. Α <u>β</u> Θε.	1,53	0.13	0.134	0,12	0,22		CAP TO		X Phyllic	X Sericite Kaolin	Clays		-
	DISTRICT	AURORA, MINERAL CO., NEVADA	COLD CIRCLE (MIDAS), ELKO CO., NEVADA	CORNUCOPIA, ELKO CO., NEVADA	BULLFROG, NYE CO., NEVADA	JARBIDGE, ELKO CO., NEVADA		DISTRICT	AURORA, MINERAL CO., NEVADA	GOLD CIRCLE (MIDAS), ELKO CO., NEVADA	COEMUCOPIA, RIKO CO., NEVADA	BULL-FROG, NYE CO., NEVADA	JARBIDGE, BLKO CO., NEVADA	

	PROBUCTION		- h	CRAD	GRADE (2)	П	-		-	200	- Constant	1000		ALI	ERATION A	ALTERATION ASSEMBLAGES	55		TOORS HOO
DISTRICT	Δυ θε. Δg θε. (1) (1)		T/20	7/10 01/1	Au:Ag	PETALS 7 (3)	x10e	HOSTS	1 12	AGE	OF VEIN	EIN	PROPYLITIC	POTASSIC	ARGILLIC PHYLLIC		ALUNITIC	SILICIC	MATTO Hor:Vert
ROCHESTER, PERSHING CO., NEVADA	0.078	8,88	0.086	9.74	titis	0.03	0.911	PERMO-TRIAS. RHYOLITE	IAS.	72.5 co 78.8 m. y.	Ad. Qr. Se. Ar. Py. Sp. As. Al.	75, 76, 75, 76,	н	×	ON.	Sericita	X HENOR	*	cıs
MCGOLLON, CATRON CO., NEW MEXICO	0.278	13,2	0.22	10.4	1:58	UNDER 1% EXCEPT IN DEEP LEVELS	1,39	TERTIARY ANDESITE & NHY, TUFFS, FLOMS, BREC- CLAS & DIKES		шо.(1)	Ad, Qt, Py, Te, Sp, Cp,	B. 11. 81.	н	X adularia	×	*	NO	*	1:1 to 1:3
BODIE, HONG GO., CALIFORNIA	1.456	7.28			113	VERY		HIOCENE ANDESITE AND DACITE PLUGS	E AND PLUGS	8.6 50 7.1	Ad, Qt, Rb, El, Sp	Ad, Qt, Ca, Ar, Rb, El, Sn, Py Sp	ж	×	X TX			× '	
TUSCARORA, ELKO CO., NEVADA	0,162	7,14	0.38	16.8	1:44 to 1:100	0.02	0,425	EOCENE-OLIG, RHY, TOFF, ANDES, PLOG, ANDES, PLUG	_	38.0 n. y.	Ad, Qc, Rb, Py, Bo, Gn, Cy, Au,	Qt, Ca, Ar, Py, Sn, En, Gn, Sp, Cp, Au, Ag, Au	×	X adularia	×	×			
TAYOLILTA, DURANGO, HEXICO	6.24	318.0	0.52	26.5	15:1	-	OVER 12.0	TERTIAL ANDESIT FLOW, P PLUC, I LITE P	TERTIARY ANDESITE FLOW, ENCORE PLOC, REVO- LLITE PORPH- YRY	OLIGO- CENE	Ad, Qr, Au, Ag, Gu, Sr	Ca, Ch, Py, Cp,	н	н				*	Z:1 to 4:1
DISTRICT	CAP TO ORS	NAT SOIL		OF BOILING VERY FINE- GRAINED QUARTZ		FLUID INCLUSION DATA (6)	SALIN- IIIY (7)	₩S.8	VERTICAL	QT PSEUDO- HORPHS APTER CALCITE		VERTICAL ORE EXIENT R.	VEIN	MAX. VEIN WIDTHS		CONSTRUCTS		NEF	REFRENCES
ROCHESTER, PERSHING CO., REVADA	X Phy111c	×		*		YES LOSS OF CO ₂	٠	270 Eo 310	SILVER VALUES DECREASE WITH DEPTH			300	N to N30E 30-70U	AVE. 3 1 13	ANDALUS ALTERA BULK TO NOT INC HAD 15- 18 CO ₂	ALDEALUSITE DUMORTIERITE ALTERATION REPORTED, NOULT TONHACE POTENTIAL, NOULT TONLUED, SOLUTIONS HAB 15-20%, GO, BOLLING 1S CO, RELEASE	F3 - 3-5011	VIKRE (1978) KNOPH (1924)	20
CATRON CO., NEW HEXTGO	NOT	н							BASE METALS INCREASE WITH DEPTH	н		365	N60W 75-89N	01	QT VEIN CA VEIN	QT VEINS PASS UPHARD TO	WARD TO	FERCUSON (1921) KANTLLI & OBJOT PERSONAL STUDY	FERGUSON (1921) KAHILLI & GRWOTO (1977) FERSONAL STUDY (1977)
BODIE, HONO CO., CALIFORNIA	SAID TO BE BLEACHED WEAR ORE	*		н				215 245 m	Au. Ag VALUES VECREASE VITH DEPTH			004	N60-70E		ASSOCIA	ASSOCIATED WITH CALDERA COMPLEX	11.1	ALBERS & KLEINIAHPL (1 WHITE (1974) SAMKINS (1960) PERSONAL STUDY (1980)	ALBERS & KLEINHAPPL (1970) WHITE (1974) SAKINS (1960) PERSONAL STEDY (1980)
ELKO CO., REVADA	Sericite	-								32	4	110	1	-	ADULARI HIGHEST POTENTI MUCH OF FRON PL	ADULARIA ASSOCIATED WITH HIGHEST AU VALUES, BULK POTENTIAL NOT INCLUDED, HUCH OF AU PRODUCTION IS FROM FLACERS	S, BULK TUBED, TIDED,	GRANGER & O	GRANCER & OTHERS (1957) ROBENTS & OTHERS (1971)
TAYOLTI'DA, BURANGO, HEXI CO	2	X WITH POST- ORE TILTING	POST- ING	×	1	SEE	8.6 8.3	265 1	BASE HETALS INCREASE WITH DEPTH			909	N10W, 65-85E N40-70E,	2	MALLROY TIZED, IN AREA AB VALI	KS SAID T FLUIDS BO IS OF HIGH RES AND AT RESOC. W/ C	HALLROCKS SAID TO BE ALBI-AN TIZED, FLUIDS BOILING ONLY BI IN AREAS OF BIGHER AU AND SA AE VALUES AND AT VEH TOPS SI VEINS ASSOC, W/ CALDERA.	ALBINSON BROCUM (197 SAWKINS, 19 SMITH (1974 SMITH 6 OTH ORDONEZ (19	ALBINSON N SAGKTNS, 1980, werbel com. S SHITM (1971) SHITM 6 OTHERS SHITM 6 OTHERS SHITM 6 OTHERS SHITM 6 OTHERS
										TABLE 1	TABLE 1, CONTINUED	UKD							

ALTERATION ASSEMBLACES	ALIC ALUMITIC SILICIC ROFTO ROFT	. *		111 00 311	м	я м	м м м	м м м	M M M	X X X X HUESSIG (1967) FULL & CRANTON MANGHOFT (1914)	X X X X X HUESSIG (1967) FULL & CARATHAN AMAGNOFT (1914) AMAGNOAL STUDY DE GESEROL STUDY DE GESTOR STUDY DE GESEROL STUDY DE GESEROL STUDY DE GESTROL STUDY DE	X X X X HUESSIG (1967) PERCONAL STUDY DE CERRON (197) LOWILER (with a composer (1971) PERSONAL STUDY DE CONTRIBA (1971) PERSONAL STUDY DE CONTRIBA (1971)	10 Bu
	ARGILLIC PHYLLIC	×			HINGE, NO POTALLI.	HINOR, IN VERN FOOTBALL X X Kaolin	HINDE, IN VEIN POOTUALL X X Kaolin	HINGR, IN VEIN POOTABLE X X Kaolin	HINOR, IN VEEN, X Kaolin	HANDER, IN VEEN X X X X X X X X X X X X X	FA N	72	22 2 22 32 32 42 42 42 42 42 42 42 42 42 42 42 42 42
POTASSIC		×			X Adularia P			Adularia Adularia	Adularia Adularia HMX, VEZN, VEZN, ID-PLS	X X Inlarts X X X X X X X X X X X X X X X X X X X	N X X Inlarie F 1	NAX. HAX. HAX. HAX. HAX. HAX. HAX. HAX. H	X X X X X X X X X X X X X X X X X X X
PROPYLITIC		×	н		×					N N N			
OF VEIN		Ad, Qt, Cp, Ca, Na, Au, Te, Ar, Ag, Sn, Py, Al, St, El, La	Ad, Qc, Cs, Rb, Ar, El, Ag, Au, Py, Sp, Cp, Gn, Po, As, Pl		Ad, Qc, El, Au, Snl, Pr		MA, Qr. El, Ar, Qr. El, Ar, Qr. El, Ar, Qr. El, Fry, As, Gr. El, Fry, As, Sr. Ga, Sp.	A4, Qt, E1, Py, A4, Qt, E2, E1, Fy, A4, Qt, Ca, Fy, A6, Ca, E2, Ca, Sp, Ca, Ca, Sp, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca	A4, Qc, E1, A4, Qc, E1, A4, Qc, E1, A4, Qc, Ca, Fy, A4, A4, Qc, Ca, St, Ca, Sp, Ca, Sp	Ad, Qt, El, Ad, Qt, El, Ad, Qt, Ca, Ad, Qt, Ca, Bo, So, Bo, So, COTTE THE MAN	Ad, Qt, El, Ad, Qt, El, Ad, Qt, Ca, Ad, Qt, Ca, Bo, So, El, Ca, So	A4, Qc, E1, A4, A4, A4, A4, A4, A4, A4, A4, A4, A4	A4, Qc, E1, A4, Qc, E1, A4, Qc, E1, A4, Qc, Ca, Fy, A4, Qc, Ca, Sp, A4, Qc, Ca, Sc, Ca, Sp, A4, A7, A8, A8, A8, A8, A8, A8, A8, A8, A8, A8
AGE		OLIG.	04.16.7		HIOCENE	нтосеие 14.0- 13.7 п. у.	HIOCENE 14,0- 13,7 m. y. HIOCENE OR	HOCENE 113.7 m. y. 113.7 m. y. OB	HIOCENE 114,0- 113,7 m. y. HIOCENE OR YOUNCERE OR TO PROPERTY	H10CENE 13.7 " 13.7 " " 7. " "	HIOCENE HIOCENE Y. N. Y. WORNERS N. Y. CHINES N. Y. CHINE	HIOCENE HIOCENE HIOCENE OR	HIOCENE HIOCENE OB YOUNGER BON HORFING X X X X X X X X X X X X X X X X X X X
HOSTS	-	OLIGOCENE RHY. TUFF, AMBESITE TUFF AMB QUARTZ LATITE PORPH.	CRETACEOUS SHALE 6 LIME- STONE CAPPED BY CONGL. 6 MISC. VOLCAN- ICS	THE NAME OF BO	BACITIC VOL- CANICIASTIC SHALES & CONGLOMERATE, AND AGGLOM.	DACITIC VOLCANI SHALES SHALES CONGLOPERATE, AND AGGLOH. TERTLARY RIV. PLUS, FLOAS & TUPPS. BASALT FLOAS	MACENE MACENE MACENE MACENE MACENE MACENE MINOLITE	ACTION VOL. MALEA MALEA MALEA MALEA MALEA MALEA MALEA MACACAGA MAC	MACCETTC VOL. MALES 4. TO MALES 4. TO MALES 4. TO MALES 4. TO MALES 4. LAST 7. PLOSE 7. TO MALES 7. LAST 7. PLOSE 7. LAST 7. L	MALES & CONTROL ON A MALES & C	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	MALES AND THE STATE OF THE STAT	MALES AND SECULD STATE OF THE SECULD STATE OF THE SECULD SECULD SECURD S
x10 ⁶		2.5	Casari	0.13	İ	0.152		THE RESERVE THE PERSON NAMED IN COLUMN 2 I	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWIND TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN				
METALS 7 (3)		UNDER	Abour 4	0	-	۰	Š		UNDER 1	UNDER 1 TAUTO SELE SELE SOLE SO	THATE INSTER (6) SEE NOTES	UNDER TAUTO NACES (4) NACES (5) NACES (6) NACE	UNDER TEATED NOTES SEE NOTES N
Auth		1:6.3	1:646	111.5		115,4		115.4 111	3 2	3 2		3 2	3 =
7, 0z/T	-	345 2.18		0.	_	1.2 6.5		996 1.2 6.5 111 607. 2.8 2.8 111 EVIDENCE OF BOILING	2.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	3.2 6.5 3.8 2.8 3.8 VERY GR OF BO	2.6 5.5 6.5 5 6.5	2. 8 2.8 6.3 GO YOU TO WARK TO	Soore x x soore x x x soore x x x x x x x x x x x x x x x x x x x
0z. 4u		5.45 0.345	20.5	1,0		0,996		PROX. 2.	0.996 1.2	PROK. 1. 18 2. IN TAIL RE SHOOT TITH FIAL STITUSES	PEGGK. 1.18 EVIDENCE ESTONE STONE CONTINUE CONTIN	FEGG. 2. FEGG. 2. FEGG. 3.	X X X X X X X X X X X X X X X X X X X
(1) (1)		0.86	0.32 20	60.0	1	0,16 0,							
DISTRICT		REPUBLIC, FERRY CO., WASHINGTON	FRESNILLO, ZACATECAS, HEXICO	HAYDEN BILL, LASSEN CO., CALIFORNIA		SEVEN TROUGHS, PERSHING CO.,	120	1 2 2	1	4.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	PRODUCTION	CTION		GRAD	GRADE (2)								ALT	ERATION A	ALTERATION ASSENBLAGES			
DISTRICT	Au 0z.	Ag Oz.	Au Oz/T	Ag Oz/T	Aushg	BASE HETALS Z (3)	TORUACE x106	HOSTS	ACE	OF 1	MENERALOGY OF VEIN (4)	PROP'M.ITIC	POTASSIC ARGILLIC PHYLLIC	ARGILLIC		ALUNITIC	SILICIC	ORE SHOOT RATIO HOT:Vert
ALPINE CO., CALIFORNIA	2.5 NOT HINED 0.009 HINED	80.0 NOT MINED 0.25 HINED	90.0	2.0	1:33	NEARLY 0	40.0 NOT HINED	TERTIARY RHYOLITE PLUG AND BRECCIA	8.0 y.	-		*	X adularia	*	X Sericito		×	
CILBERT, ESHERALDA CO., NEVADA	0.005	III.	1,25	118		0	0.004	HIOCENE RHY. ASH & POR- PHYRY, ANDESITE	0. ii		Ad, Qt, Ar, Rb, Au, Gy, Ca, Py, Cp	н		×	×	×	×	
RANSEY- EALAPOOSA, LYON CO., NEVADA	0.07	9.9	0.89	83.5	11.95	UNDER	0.09	MIOCENE ANDESITE FLOMS & DIKES, RHY.	10.0 F. Y.	Ad, Qt. Py, Ca.	Py, Ca.	я		X Kaolin	*		×	
CEDAR HTN., HTNERAL CO., NEVADA	0.034	APPROK.	90.0	0.81	1:20	o	0.834	TERTIARY ANDESITE, DACITE INFF, QUARTZ LATITE	. 29	Qt, E1, Py	7			ж	×	×	, ×	
RAMHIDE, MINERAL CO., NEVADA	0.051	0.697	0.72	9.9	1:14	0.2	0.071	MIOCENE RHY., DAGITE, ANDESITE	11.0 16.0 16.0		Ad, Qt, Ar, El, Rb, Cy		м	×	ж		×	
DISTRICE	CAP TO ORE	S Z ON	EVIDENCE OF BOILING ORE SHOOTS VERY FIRE- WITH FLAT QUARTZ OURREZ OUTUNE (5)	VERY FINE- GRAINED QUARTZ		FLUID INCLUSION DATA (6)	SALIN-	Th VERTICAL 9C ZONATION (8)	TON HORE	OT PSEUDO- HORPHS AFTER CALCITE	VERTICAL ORE EXIENT B.	VEIN	WEIN WIDTHS		COMPENTS		NEP	RPERENCES
MCNITOR, ALPINE CO., CALIFORNIA	GLAY			×						HINOR					AACA HINE INCLUDED	ERVES OF	SILBERHAN & MCKEE (19 PERSONAL STUDY (1980)	SILBERHAN & HOKEE (1974) PERSONAL STUDY (1980)
GILBERT, ESPERAIDA CO., NEVADA	н			*						*	0VER 100	N45W 60-90W N-S 50W N30E 80W	121	SAID TO NEAR OF ORDOVIC LOW VOI ANDESIT	SES, MOST STAN LINES CANICS, S	SAID TO BE "BLEACHED" NEAR ORES, MOST ORE IN OSEOVICIAN LIMESTORE BE- LIAW VOLCANICS, SOME IN ANDESITES		SILBERMAN & MCKER (1974) ARCHROLD & BLORPUIST (1969) PERCISON (1928)
RAMSEY- ZALAPOGSA, LYON CO., NEVADA	g.x			80	SORE	YES		221		*	OVER 213	859-55 A-3	8.8		AU PRODUCTION IN PART FROM PLACERS, DATA INCLIDES COOSEBERRY TH FROM GOOSEBERRY	PART EA RRY HINE, RRY		SILDERANN & MCKER (1974) COUCH & CARPENTER (1943) VISSER & LINDSEY (1966) PERSONAL STIDY
CEDAR PUR., HUNERAL CO., REVADA										н				Ag PRO	DUCTION AP	AR PRODUCTION APPROXIMATE	KNOPF (1922)	
RAMILDE, HINERAL CO., NEVADA	Kaolin	ď												IATED	T CRADE OF	HIGHEST CRADE ORES ASSOC- IATED WITH KAOLIN		SILBERHAIN & HOORE (1974) KOSCHRANN & BERGENGAH. (1968) ROCERS (1911) COUCH & CARPENTER (1943)
					1				TABLE	TABLE 1, CONTINUED	UED							

	RATIO Hor:Vert	1:1 to 1:3	313				REPRESIONS	НАСБОЗАКДД (1908) ТАВЕВ (1949)	PRESCHAL STUDY (1980) PROCTOR & DORATABU (1977) CALLACIAN (1939)	(1935)	PERSONAL STUDY (1962-80)	ERMONS (1917) RAHSAY & KOBE (1974) WEISSBERG & WOOZICKI (1970)	
	STICIC	×	×	н	H	ж		HACDORAL TABER (1	PERSONAL PROCTOR COUCH & CALLAGIA	SCHROTER (1935)	PERSON		
57	ALUNITIC						72	CIAY DECREASES AND SERT- CITE INCREASES WITH DEPTH IN VEIN WALLS, WALLS SAID "DIEACHED" NEAR ORE	HUCH PERSON, IN ORES, SOUR		DATA EXCLUDE 49.0 HILLION TODS OF 2.7 Ag OZ/TON AT MAYERSLOO & LANCTRY HITH HUCH BARITE CANCUE, THE COMPANY EXPECTS 65% Ag	AS PRODUCTION APPROXIMATE, ZEOLITIZATION OF MALLEOCKS NOTH BORTH, PHYLLIC POST-NATES FOTASSIC ALTERATION AS AT GIMNAJUKTO	
SEMBLACE	PHYLLIC	*	ж	×		н	COMMENTS	REASES A	NI GOOD IN C		CCLUDE 45 5 2.7 Ag 30 & LANG RETE CAP CEXPECTS	AR DECKL PHYLIC IC ALTER	
ALTERATION ASSEMBLACES	ARCHLIC PHYLLIC	Kaolin	н	н		н		CIAY DEC CITE IN IN VEIN	HUCH PER		DATA EXCI TONS OF WATERLOO HUCH BAR COMPANY RECOVERY	AR PRODUCTI ZEOLITIZATI HOTED, AR D DEFTH, PHYI POTASSIC AL GUANAJUATO	
ALTE	POTASSIC A	н	X Adularia			X Adularia	HAX. VZIN WIDTHS	AVE.	2	и	2.2	10	
	PROPYLITIC POT	н	×		*	я	VEIN	N45-90W 60-70S	N65W SW DIP	M, E & W DIP	72	N45-80W, DIPS 40-80S AND 80M	
	OF VEIN	Qt. Ca. Au. Ca. Cp. Sp. Ba. Ha	Qr. Ca, Nu. Py, Ca, Nu. Gl	Ad, Qc, Gs, Ar, Au, Py, Bu, Gy, Sp, Gn, Ja	Co. Ag.	Ar, Hb, E1, As, Ai, Cp, Sp, Hs, Ca, St, Rc, Ad,	VERTICAL ORE EXTENT II.	001	300	110		465	
	MIN	Ad, Qu St, Ba	8c, P. 52	Sp., og	Qt, Be, Ar, Rb, 7 S1, Cy, 1	\$ 9.9.5°	QT PSEUDO- MORPHS AFTER CALCITE		*	*		*	
	AGE			PLIO.?	MIOCENE	PL10.	NOT 1			M 80 -		80 M	
	HAJOR BOSTS	MIOCENE DACITE POR- PHYNY; AN- DESITE PLOM, BRECCIA &	TERTIARY QTZ. MONICON. STOCK, AN- DESITE	TERTTARY RHY.	GLIGHIOCENE LACUSTRINE TUFFACEOUS SED., VOLC. TUFF & BREC- CIA	EOCENE-HIO. ANDESITE TUFF E BRECCIA, DACITE, RHY.	Th VERTICAL OC ZONATION	MASE PRIALS INCREASE WITH DRPTH		PYRITE INCREASES WITH DEPTH		BASE PETALS INCREASE WITH DEPTH	
	N.			27.17	OCIC LACI TUPI SED.	P & AN	SALIN- OF			-			
	TORRIACE	0,08	0,469							-	-		
	HETALS T. (3)	01	0.3	MINOS	"HOD-	n	FLUTD INCLUSION DATA (6)						
GRADE (2)	Auth	1:6	. 11	11.2	1200	114 to 1130						×	
CRAI	7/20		0.47				VERY FINE- GRAINED QUARTZ	*		н		-	
L	Oz/T	-	0.44				EVIDENCE OF BOILING ORE SHOOTS VERY FINE- WITH FLAT GRAINED GOTTOMS (5)		*				
PRODUCTION	(1) (1)	0,035	0,220		17.5	1250.0	S TAN					3	
PRODU	Au 0z.	0.031	0.247		0.014	41.5	LOW PE CAP TO ORS	×				Sericite	
	DESTRICT	BOHENTA, LANE/DOUGTAS CO. ORECOM	SEARCHLIGHT, CLARK CO.,	HOHAVE, KERN CO., CALIFORNIA	CALICO, S. BERRARDINO CO CALIFORNIA	GREAT BARRIER ISLAND, NEW ZEALAND	DISTRICT	BOHENIA, LANE/DOUGLAS CO. OREGON	SEARCHLIGHT, CLARK CO., NEVADA	POHAVE, KERN CO., CALIFORNIA	CALICO, S. BERUARDINO C. CALIFORNIA	GREAT BARRIER ISLAND, NEW ZEALAND	

	PRODUCTION	- min		The second										ALI	ALTERATION ASSEMBLACES	SSEMBLAGES			The same
DISTRICT	Au 02.	AB 0z.	1/20	1/20	Auth	METALS 7 (3)	TORNACE	HAJOR	2 8	AGE	OF V	OF VEIN (4)	PROPYLITIC	POTASSIC	POTASSIC ARGILLIC PHYLLIC		ALUNITIC	STLICIC	RATTO Hor:Vert
CALVO, CALVO, CHIPUMIUA, PEXICO	APPROX.	APPROK.	1.18	16.6	1:40		APPROK.	TERTIARY ANDESITE FLOAS		0116.1	qt, Ca, Ar, Ag, Au, Py, Ga, Cp, Sp	Ar. Ag.	м	1-7	×			н	
OCANFO, CHIRCANGA, PEXICO	0.175	6.65	0.25	8.6	1:60	0.03	7.0	LOCKNE ANDESITE FLOMS 6 RHYOLITE TUFF	TUFF,	29.0 E0 27.0 m. y.	Sp., Ca.	Ca, Ar, Au, Te, Sn, Py, Cp, Gn	×		×	н		я	1
YOQUTVO, CHIMIAHIM, MEXICO	0,052	5.4	0.35	36.0	1:74	"HEDER-	0.150	AMPESITE FLOUS & TATITE P	TERTIARY ANDESITE FLOAS & TUFF, LATITE FLOAS		Ad. Qc.	Au, El, Sa, Ga, Cp, Ar,	ж	*	×			×	211
EL ORO, MEXICO,	0.86	APPROK.	ABOUT 0.4	ABOUT 4.0	11.7	0	0.0 5.0	HTOCENE ANDESTTE FLOW ATOP CRETACEOU SHALE AND SANDSTONE	MIOCENE ANDESITE FLOW ATOP CRETACEOUS (7) SHALE AND SAMDSTONE		Qr, Ca,	Cp. Py	×		*			×	1: 6
GUANACEVI, DURANGO, PEXICO	APPROK.	APPROK. 440.0	0,17	73.0	1:100 to 1:500	6-12	6.0	TERTIARY ANDESITE FLOWS, RI CONGLOPER	ED BED KATS	POST 38.0	Ad, Qt, Ar, Rb, Sn, Fl, Gp, Tn,	Ga. Py. Ha. Ra. Ga. Sp.	ж		н	н		×	Ħ
DISTRICT	CAP TO ORE TO	10 E		OF BOILING VERY FINE- GRAINED QUARTZ		FLUID INCLUSION DATA (6)	SALIN-	48.8	VERTICAL		QT PSEUDO- V HORPIS APTER CALCITE	VERTICAL ORE EXTENT m.	VEIN	HAX. VEIN VIDTHS		COMPENTS		REF	REPERENCES
GRADALUPE Y CALVO, GHIHUAHUA, HEXICO				*					BASE HETALS INCREASE VITH DEPTH			00%	M, Dip W	98	Au VALU DEPTH	DEPTH		IMILEY (1931) TURNER (1978) CLAIK & OTHERS (1979)	(1979)
OCAMPO, CHINGARDA, MEXICO	x argillic											400	NW 6 NE, SW DIPS	13	BASE NE PRECIOU POST-DA	BASE PETALS EARLIEN THAN PECTOUS PETALS, ORE IS POST-DACITE STOCK EMPLACE- PENT	ER THAN ORE IS PPELACE-	WISSER (1966) KNOWLING (1977) KINGH (1912) CLARK & OTHERS (1979)	6) 977) 2) 283 (1979)
YOQUIVO, CHIHUMHUA, MEXICO				X Chalcedony	dony							295	NOS-40E, 60-75E N-S to N14E, 75-80E to	12	CALCITA	CALCITE IS POST ORE.	DRE.	WISSER (1966)	9
RL ORO, HEXICO, MEXICO	x bleached		н	*					BASE PETALS INCREASE WITH DEPTH			215	NNW, W DIP N-S, E & W dip	AVE. 3 319 MAX.		AU PROUCTION APPROXIMIE, Tornace Approximate	PROXIMATE,	EMMONS (1937) LINDGREN (1933) LOCKE (1913)	933)
GUANACZVI, DUBANCO, HEXICO		7	н	*								400	NIOW, w dip	07	ADULAR VITH HI	ADUARIA CANGUR ASSOCIATED WITH HIGHEST GOLD VALUES	ASSOCIATED D VALUES	DURAING (1978) NALPERN (1939) TERRONES (1922)	978) 39) 922)
	1				1		-							-					

1 1	PRODUCTION	TION		GRAD	GRADE (2)		TOWAGE	HA.JOR	280	-	HEBALOGY		ALT	ERATION AS	ALTERATION ASSEMBLACES			ORE SHOOT
2		(1) (1)	1/10	1/20	Authg	HETALS 7 (3)	×106	HOSTS	7		OF VEIN	PROPYLITIC	POTASSIC	ARCITLIC	PHYLLIC	ALUNITIC	SILICIC	Hor;Vert
A	APPROX. 0.26	APPROX.			11.2	51		HIOCENE QUARTZ LATITE PLUG	att	9 kg.	Qt, Au, Py, Be, Al, En, Gn, Sp, Gv, rare Gp	*		н	Mitte	×	н	2:1
	0.074	6.87	0.17	16.28	1:94	0	0.426	OLIGOCENE- HIOCENE RHY., ANDESITE, LATITE, NEAR RHY. DOME	IY., 22.0		Ad, Qt, Pl, Ar, El, Cy, Br, Au			X Kaolin	¥		*	
	0.039 0.311	0.311	0.182	1.46	1:8		0,214	MOCENE	15.0	A4, 9c	ĕ			x Kaolin				
	0.033	3.27	0.24	24.3	1:101	VERY	0.135	HIOCENE RHY. TUFF, RHY. BRECCIA, ANDESITE, RHY. PLUG	15.0 to 16.5 a, y.	5 4 Y 9.	Qt, Se, Rb1, Gn, Au, Ag, Cy, Ho, Be,	×	X Adulerie	X Kaolin	×	н	*	m
	6,175	0.424	0.25	0.75	113	0	69.0	PRECAMBRIAN GRANITE, HIOCENE LATITE	AN HIOCENE		Ad, Qt, El, Ch, post-ore Fl, Py, Sa, Ca	ж		*	н	Q.	ж	117
	CAP TO	No No	EVIDENCE OF BOLLING ORE SHOOTS VERY FINE- WITH FLAT ORARRED ORARRED	OF BOILING VERY FINE- GRAINED OHARTZ		FLUID INCLUSION DATA (6)	SALIN-	48.8	VERTICAL Q	QT PSEUDO- MORPHS AFTER CALCITE	VERTICAL ORE EXTENT	VEIN	WEIN WIDTHS		COMPLEKTS		REPE	REFERENCES
	X Alumite			*							305	W30-55W		_	SOME ORE-BEARING PIPES IN DISTRICT, ORE HORIZON HAY BE DOMEED		STEVEN & RATTE (1960)	(1960)
								ING	ZaS INCREASE WITH DEPTH		UNDER 215	N60-70W 75N-90 N25W 72E	9 21	GRADES	GRADES ARE APPROXIMATE		SILBERMAN & WILLDEN & SP LEWIS (19667 BURGESS (191	SILBERMAN & MCKEE (1974) WILLDEN & SPEED (1974) BLEWIS (19667)
	X Argillic										HUCH ENCOED 37	NSW 75E		W/ ARGI GRADES "TALC" WALLS R	BEST AN VALUES ASSOCIATED W/ ARGILLIC ALTERATION, GRADES ARE APPROXIMED, "YALC" ALTERATION OF WALLS REPORTED	10	SILBERHAN & MCZEE (1974) ROBERTS & OTHERS (1967) COUCH & CARPENTER (1943)	HERS (1974) ENTER (1943)
DIVIDE, ESHERALDA CO., REVADA	X Argillic	u		×				Au DBC DBC TNC	Au VALUES DECREASE WITH DEPTH AB VALUES INCREASE		95	NOS-65E 55E NW vert. dip	9 9	IN LOWE ASSOC. UPPER L ORES LA OF RHYO TION OF	IN LOWER LEVELS AS IS ASSOC. WITH EACLINITE, IN UPPER LEVELS WITH SERICITE ORES LANGELY A REPLACEMENT TON OF REVOLITE TUPF, OPLIZA-	8 IS NITE, IN SERICITE PLACEMENT OPALIZA- RITED		PERSONAL STUDY (1979-80) CARPENTER (1919) BORHAN & GARSIDE (1979) WISSER (1966)
	Arg- 1111c(7)		1X	*				-	MONE	н	SER	N70-80E 60N (KATH.) N45E nest 90	7.6	DISTRIC VERT. E 65 m., 170 m., MINED E	DISTRICT HUCH ERODED, VERT. EXTENT AT TYRO IS 65 m., AT EXTREBURE IS 110 m., DATA INCLUBES UN- HIMED RESERVES AT PORTLAND MINE (15),000 TONS OF 0.18	188	PERSONAL STUDY (1980) CARDNER (1916) JORALEMON (1925) HENDERSON (1923)	JDY (1980) 86) 1925)
1		-			1		1	1	- 1				1					

1. 1. 1. 1. 1. 1. 1. 1.	101	PRODUCTION		+	GRADE (2)	BACK	TONDIAGE	_	26	ORE	HENERALOGY	ALOGY.		AL	EKATION A	ALTERATION ASSEMBLAGES			ORE SHOOT
1.		5					×100		12	AGE	0 V	EIN	PROPYLITIC	POTASSIC		PHYLLIC	ALUNITIC	STLICIC	RATTO Hor:Vert
1.5 1.2		.0	-	25 0.50		2	4.0	ANDEST DACITE RHYOLI PLUG	4 4 6		Ad, Qt, Rc, Sp, Bo, Sc	Py. E1.	×			×		×	10:1
1,						-	0.4 0.4	TERTIA ANDESI SANDSI TUFF, FLOAS	TTC CONE,	10.3 m. y.	223	8 7 8 8 7 8	ж		*	×		ж	3:4
1.0 0.06 18.0 11.26	9		1	00 29.0	11		6.9	EOCENE LATITE ANDESI FLOWS TUFF, AGGLOH	16.		QC, Ar, F1, Be, Cp	Ga, Sp.	м			×		×	11 88
1,18 0,23 39.0 1,182 3 0.07 1,182 3 0.07 1,182 4 1,182	50						0VER 1.0	TRIAS: SHALE BY TEI ANDES! RHYOLI BRECCI	SIC CAPPED RTIARY ITE & ITE		Sp. ds	9 ii 6		ж	×				3:1
X	1 6	5. 27.					OVER 0.7	OLIGOC RHY. T FLOWS, LATITE CIA		OLIG. (?)	Qt. Ca. Au, Py. Gn, Sr	Ar, Te, Op, Sp,			Kaolin			×	6:1
X	11 1000		EVIDENCE SHOOT	CE OF B	FINE-	FLUID INCLUSIO		45.8	VERTICAL	HORPHS CAL		MRTICAL ORE EXTENT	VEIN		93	COMPENT	N N	828	BRENCES
110 X X XES 2-10 270 130 130 1860-75E 2-5 VEINS AVE. I HETER LIDE	g I		and the second		× ×	1							N458 35-50		-	ECONDARILY MLLY IN Ag	ENRICHED	SPURR (191	(1921)
X	H 7	110	×	-	*	YES	2-10					130	N60-75E			ETALS ARE AVE. 1 HRT	POST-AS	KAMILLI &	ONENOTO (1977)
250 WG-909 658 WT. VITH DETH AND AG VALUES UPETH UNCEASE WITH DETH AND AG VALUES UPETH UNCEASE UNCHASE UPETH UNCEASE UPETH	*	-		-	*				ZnS INCREASE NITH DEPTH			250	NZS EG 40E NOS-204	70E	AS VAL. DEPTH, ORE SH	UES DECREA WALLROCKS OOTS SAID	SE WITH AROUND "BLEACHED"	SHEPELBINE DOUGLAS (1	(1957)
100 MOSE to MIGW AVE. ANOW GUE, PVILITATION INTENSE 60W DIP 1 INTENSE BELGM	1		*						Zn & Pb INCREASI VITH DEPTH	N N		250	N40-90W 6 HANY DIPS APPROACH			AND PYRIT	E INCREASE		59)
				-					ZnS INCREASI VITH DEPTH	M		300	NOSE to N 60M Dip			FICATION 1 ORE, PYRITE BELOW	NTENSE TLATION	MISSER (19	66)

1.5 1.1 1.2	A 3	Au Oz. A	PRODUCTION u Oz. Ag Oz.	Au	CRADE (2)			TONNAGE	HAJOR	æ v	ORE	HINER, OF V	MINERALOGY OF VEIN	PROBYLITTC	POTASSIC	ARGILLIC	ALTERATION ASSEMBLACES	ALUNITIC	SILICIC	ORE SHOOT
15.3 0.10 15.3 11.15 11.20	6 5					9 10 10 10 10 10 10 10 10 10 10 10 10 10		1.72		K AND		Qt. Ca. Py. Te. Ca. Sp	4) Ar. 8b. Rc. Cp.	*			*		н	Ror:Vert
15.3 0.10 15.3 11.13 0.000 MALEGION 0.000 0.00	. 0			ABOUT 0.1	ABOUT 0.4		VERY	APPROX.		FLOW,		2.2	3.8	×	*	*	Sericite		н	
0.353 0.44 0.33 1:0.6 "Mainor" 1.1 PALENCOIC 11, 6.5 6.5 5.5 7.5 6	3.	0.100	15.3			1:153		OVER 1.0	TERTIAN RHY. TI ANDESIT	EF.	x	Qt., Ca., Ca., Py.	Ar, El,							175
1.10	1	0.484	0.363	0.44		1:0.8	"adnor"	3	PALEOZO BACITE, RHYODAO TRACHY		PALEOZT	Ad, Qc, El, Gn, Ae, He	Ar, Au, Cp, Sp,	ж					×	116
X		6.0	27.0			1:30	UNDER 12		TERTIA ANDEST RHYOLEI		14.8- 15.2 B. y.	Ad, Qr. Ca, Se, Rb, Ba,	F1, Cp. Cn. Ar. Py. P1, Je, H1	×		*	×		*	65
X 135 E-U, N DEPTH X 135 E-U, N DEPTH 1 SPETHER ARE ASSOCIATED USING ASSOCIAT		Ne To	10 m	DENCE O	ERY FIL		NCLUSION		48.8	VERTICAL	QT PS HORPES CAL	S APTER CITE	VERTICAL ORE EXTENT P.			SI	COMPENT		REF	ERENCES
X 133 E-14, N DIP 1 SPERINGS & RASOULDES OLD VALUES ARE NOT					*					Ag/Pb, Ag/Zn, Zn/Pb DECREASE WITH DEPTH									FRANCISCO ((6261
No.				*						-		155	E-W, N DIP	-		T COLD VAL ATED W/ AD INCLUDES 5 & ESCALA	UKS ARE ULARIA IN COLD NTE DISTS.		7) HERS (1920)	
X										BASE METALS INCREASE WITH DEPTH			650	S "P06-5%N	410	CALCIT	S TO QUART	SUNFACE Z VITH	OJEDA & NA	PES (1963)
X 460 NES-62U 23-80S 10 POR 1863-1923. TOR 1863-1923. ACLILLE LETTER ACCULATED TOR 1863-1923.			*	1									OVER 215			MAY H STACK GUANA 0-120 LONES	AVE VERTIC ED OREBODI JUATO, UP J M. BELOW R IS 120-2	ES AS AT FER IS SURFACE, 15 H.	BROOKS (19	(02
		X Phy111c										*	094	NZS-62W 25-			AVERAGE 1. PRODUCTION 63-1923. IC ALTERATATED WITH	O METER LISTED IS TON SAID	LINDGREN (PIPER & LA PANSZE (19	1933) NEY (1926) 71)

model and	CIC RATIO		N.	x 211	×			BEFERENCES	SALL (1906)	GGARK & OTHERS (1979) DOM (1978)	SCHOTT (1929) PICKARD (1970)	SLACK (1980) SLACK (1980)	SCEPRENBACH & OTHERS (1977) SCEPRENBACH & HOBLE (1978)
	SILICIC	*	-	2					BALL	DOW (-	SING	
	ALUNITIC				X Higher elevation	*					PTH, DATA	KING Au-A, RELEASES, SE HETAL ALS EARLY	ADULARIA
SSEMBLAGE	PHYLLIC	×			Sericite	H		COMENTS			AR DECREASES FROM 600 TO 50 GRAFS WITH DEPTH, DATA INCLUDES UNMINED RESERVES	VEINS AVE. 1.0 N. VIDE, FLUIDS BOILED DURING AU-Ag DUE TO PRESSURE RELEASES, NO BOILING IN BASE HETAL STACES, MASE RETALS EARLY PARACRETICALLY	ORES IN ZURES OF MALLROCKS
ALTERATION ASSENBIAGES	ARGILLIC PHYLLIC	X Keolin	×		Kaolin Dickire	*					Ag DECR 50 GRAH INCLIDE	VEINS A FLUIDS DUE TO NO BOIL STACES, PARACEN	ORES IN
ALTE	POTASSIC			1		×	MX	WEIN WINTES	1.5	• •	9	۰	
	PROPYLITIC POL		×	н	×	н.	WEIN	ATTITUDES	MA	NM, 70-80E	NOO-07W 53E NOGW 75W	N4 SE 70E N30E	N45-604 50-908 RD4 50-908 N30-60E
	_	Rb, Au,	Sp, Cp,	Rb, El, Ba, Gn,	Rb, Sp. Bs. Tl. Se	Ta, Py, Gp, Sm	BITCAL.	ORE EXTENT P.			909	995	
	OF VEIN (4)	Py, Qt., Rb., Au, Sn	Qt, Ar, Rb, He, Py, Gn, Sp, Cp, Ba, Ha	Qt., Ar., Py, Fl., Sp., Te	79. Gg.	Qt, S1, Ta, Py, Ta, Sp, Cp, Sm	KIDO- N	HORPHS APTER					
	AGE		POST 31 m. y.	POST 35 m. y.	22.5 m. y.	10 a. y.	0. TO	MORPHS					
	# Y2	> 26				S. CCLA.	UPPTICAL	ZONATION		BASE HETALS INCREASE VITH DEPTH	Pb + Cu INCREASE TO 20X WITH DEPTH	Ag BASE PETALS INCREASE WITH	
	HAJOR	RHY. FLOW	OLICOCENE ANDESITE PORPHYRY, QUARTZ MONZ, PLUG	TERTIARY VOLCANICS CAPPING CRETACEOUS LIMESTONE 6 SHALE	TERTIARY QTZ. LATITE TUPF & BREC CLA, RHY., ANDESITE	TERTIARY DACITIC RHY, PLU RHY, BRE RHY, TUF		8.8				250	
	TOWNAGE x10 ⁶			OVER 13	OVER 0.6	OVER 6		SALIN- ITY (7)				n	
	HETALS 7		10	4 00 20 20	OVER . 5			FLUID INCLUSION DATA (6)				SEA	
GRADE (2)	-	1:8	1:45	1:150			ING		= 2			8	
CRAD	Ag Oz/T		2.89	6.9			DP BOIL	VERY FIRE- GRAINED QUARTZ	HUCH			3C4DS	
	Dz/I		0.06	0.002	0.12		EVIDENCE OF BOILING	WITH FLAT BOTTOMS (5)			н		
TION	Ag Oz.			115.1			EV.						0
PRODUCTION	Au Oz. Ag Oz.	ų		0.02	0.071			CAP TO ORR	X Kaolin			-	Phyllic
	DISTRICT	SILVERBOM, NYE CO.,	TOVAR, DURANGO, MEXICO	PARRAL, CHINARUA, PEXICO	LAKE CITY, BINSDALE CO., COLDRADO	JULCANI,		DISTRICT	SILVERBOW, NYE CO., NEVADA	TOVAR, BURANCO, MEXICO	PARRAL, CHIBUAHUA, MEXICO	LAKE CITY, HINSDALE CO., CCLORADO	JULCANI,

NOTES FOR TABLE

Footnotes:

- In millions of troy ounces. Most production figures are from the literature; several are calculated from tonnage and grade figures assuming 100% recoveries. In some cases, grade is recovered oz./ton; in others it is assay oz./ton. Most grade 1)
 - figures are from the literature; several are calculated from production and tonnage figures assuming 100% recoveries.

 Combined Pb + Zn + Cu. In rare cases is as percentage of metal; in most is as percentage of sulfide.
 - 3
- Abbreviations are: 7
- As Altaite
 Ad Adularia
 Ad Adularia
 Ad Adularia
 Ad Adularia
 Ad Silver
 Ad Adularia
 BE Energite
 Ad Adularia
 Ad Adularia
 BE Energite
 Ad Adularia
 Ad Adularia
 Ad Adularia
 Ad Adularia
 BE Energite
 BE Reargite
 An Alumite
 An Alumite
 An Alumite
 An Alumite
 An Alumite
 An Adularia
 Adularia
 Adularia
 BE Reargite
 BE Realgar
 An Angerite
 Ba Barite
 B
- - For list of boiling criteria, see references listed for each district. 65 (8
- Expressed as equivalent weight percent NaCl. The Temperature of homogenization of fluid inclusions with no pressure corrections.

General Notes:

X = Evidence present

NO = No evidence present

blank = Insufficient information
Alteration assemblages as listed do not imply they are related to the ore-forming event;
however, deuteric propylitization and/or zeolitization have been ignored.

more complex nearer the paleosurface with numerous bends, cymoids, horsetails, and bifurcations, therefore, stockwork deposits are more likely to exist nearer the paleosurface and should pass to more structurally constricted veins with depth. Numerous intra-mineralization periods of brecciation are reported in most districts.

E. Ore shoots rarely fill the entire vein structure, rather they are isolated zones within the vein enclosed along strike and dip by subore to barren gangue. Normally, the ore-waste contact is formed by a rapid drop in grade, or by a thinning of the pay streak, or both. In almost all districts, very thin and very high grade veinlets may extend outward (into a wall or within the main vein along strike) from the stoped areas, but these veinlets often become subore grade when the necessary mining widths are considered. However, the ore shoots do relate to definite structural features within the veins, such as at dilatant zones in bends concave to the hanging wall (Seven Troughs, Oatman, Comstock), at areas of vein intersection (Hayden Hill, Comstock), and in areas of dip decrease resulting in crushing of the hanging wall (Las Torres at Guanajuato). As these structural features are localized, the ore shoots contained therein are localized within an otherwise subore structure.

F. The precious metal ore zones have a restricted vertical interval of up to 1000 meters, but the typical uneroded deposit averages close to 350 meters. Because of this restricted interval, most districts have a definite elevation which marks the bottoms of the precious metal ore shoots, as well as a definite elevation which marks the tops of ore shoots. These elevations may be evident only if the effects of post-ore faulting are subtracted out of the district geology (Tayoltita, Oatman). At Oatman, Pachuca and Tonopah, the precious metal interval is domed like an inverted saucer. No satisfactory explanation for this doming has yet been If orebodies bottom at a particular elevation and top out at another higher elevation, we must look at the mineralogy of all three levels (above, within, and below precious metal ore shoots) in order to understand the orebody genesis.

G. Above this ore interval, precious metal values drop rapidly. Although the quartz vein filing extends well above the top of the ore zone, the quartz filling of the vein gradually diminishes in width (Guanajuato, Pachuca, Oatman, Gooseberry, Silver Peak), and the crystalline nature of the quartz changes to an agate or chalcedony far above the ore shoot. As quartz and agate diminish in volume toward the vein tops, calcite becomes relatively more common. Higher still in the vein system, calcite begins to diminish often to the point where an empty, paper-thin fracture is all that marks a productive and wide vein at depth (Bulldog Mountain, Guanajuato, Pachuca, Fresnillo, Oatman, San Francisco Del Oro, Kimberly).

H. Going the other way, that is, downward from the base of the precious metal ore shoots, vein fillings often differ from that of the productive horizon by two possible but different manners. These two types of changes appear to be mutually exclusive, thus are discussed separately:

a. The least common way a precious metal ore shoot may terminate with depth is illustrated by Oatman and by the upper ores at Guanajuato. In these districts, the precious metal content rapidly diminishes at the bottom of the ore shoot to anomalous but very subore grade. The quartz vein filling, as well as the strength (width, form, persistence) of the structure, continues downward. There is no appreciable change in vein mineralogy at the base except for a probable diminishing of gangue adularia, a possible increase in pyrite, as well as the near absence of calcite and precious metal minerals.

More commonly, the precious metal content gradually diminishes at the base of the precious metal ore interval until a level is reached where ore grade is not maintained. Concomittant with the decrease in precious metal values is an increase in galena, pyrite, sphalerite, and less commonly, chalcopyrite and/or pyrrhotite. Quartz persists downward without appreciable changes, but calcite is greatly reduced in volume, and sericite and adularia are slightly to greatly diminished.

I. Within the precious metal ore horizon, vein mineralogy is a rather simple assemblage of argentite, adularia, quartz, pyrite, electrum, calcite, and ruby silvers. Tetrahedrite, stephanite, polybasite, base metal sulfides, naumannite, fluorite, barite, sericite, chlorite may occur in most deposits in small to large amounts. Even less commonly found are stibuite, realgar, rhodochrosite, rhodonite, bornite, boulangerite and a host of other minerals. The veins show both a repetitively banded filling texture characteristic of open space fillings, as well as textures indicative of replacement of the walls and breccia fragments. Typically, where high precious metal values exist within a vein, the quartz gangue is very fine-grained and contains significant amounts of adularia (Guanajuato, Jarbidge, Oatman, Finlandia, Triunfo, Mogollon), and/or seri-cite intimately mixed with the precious metals.

J. Gold:silver ratios tend to be larger higher in the vein system, in those districts where ore shoots are not eroded. Oxidation and secondary enrichment of both gold and silver tend to obscure this primary precious metal vertical zonation in the many districts subjected to erosion of ore shoots.

K. The temperature of formation related to the precious metal ore interval is from around 200°C (the lower temperature postulated for Goldfield) to over 300°C, but averages around 240°C. Salinities are generally lower than 3 equivalent weight percent NaCl. Rapid or numerous temperature fluctuations are not noted in deposits studied in detail. The base metals appear to have been deposited at somewhat higher temperatures in all deposits studied in detail, from slightly more saline solutions, and are typically paragenetically earlier than the precious metals.

L. The repetitively banded vein fillings in the ore horizon deserves more description. Banded or crustified textures are so common in precious metal deposits hosted by volcanics that it has been considered a diagnostic feature of epithermal veins. The banded vein filling is little more than a series of layers, each one deposited atop the previous, of gangue and ore minerals. Often, but less often than generally assumed, the bands on each side of the centerline of the vein form mirror images of each other. This feature has led to the probably correct conclusion that each pair of bands deposited at the same time from the same solutions. However, little study has been directed toward answering two fundamental questions:

a. What trigger causes the deposition of certain minerals in one pair of bands but not in the next?

b. Why are many veins characterized by repeti-

tively banded fillings; that is, having numerous bands of the same mineral assemblage separated by numerous bands of a different mineral assemblage? For example, a 4" slab of the Gold Road Vein from Oatman, Arizona, has 41 bands of quartz and chlorite separated by 40 bands of quartz and adularia. What physico-chemical parameter was repeated over and over again to give such repeated bands?

Answers given in the past to explain this feature appear unsatisfactory:

- a. An explanation given is that wallrock and solution reactions cause changes in the solution chemistry, causing the bands to form. This is unlikely in that the wall rocks are already reacted with and the solutions are already buffered by the rocks. How could wall rock-solution reactions episodically buffer, then later episodically not buffer, the solutions?
- b. A second answer given is that simple cooling of the solution forms the bands. Cooling could lead to bands of specific minerals, but cooling does not explain the repetition of bands of the same mineral. Assuming a mineral precipitates in a particular temperature interval, what causes that temperature interval to be entered and left again repeatedly throughout the veinforming time span? Also, fluid inclusion studies of ores from Oatman, Pachuca, Tayoltita, Guanajuato, Creede, and others, indicate that rapid or numerous temperature reversals do not exist.
- c. A final answer given is that changes in solution chemistry lead to the banding. What is meant by this is that influxes of volatile or dissolved species cause the bands. It is very difficult to imagine a hydrothermal system that can have repeated influxes of volatiles or dissolved species, with each influx so similar to the previous ones, as to cause the same mineral assemblage to deposit scores or hundreds of times within a narrow vein.

Evidence of boiling of the ore-forming solutions is common in those districts studied in detail. At Creede, Pachuca, and Tayoltita, vaporization evidence was found at the tops of the base metal ore shoots; at Guanajuato and Tonopah, the vaporization level was at the base of the precious metal ore horizon; and in others such as Lake City and Finlandia, the boiling occurred in discreet zones of high precious metal content within an otherwise base metal assemblage. These seemingly contradictory data may be seen to fit into a pattern if it is remembered that Creede, Pachuca, and Tayoltita are high in base metals, thus the boiling occurred near the top of the base metal horizon. This is the same position as the base of the precious metal horizon, thus boiling occurred at Creede, Pachuca, and Tayoltita at the same level as it did at Guanajuato and Tonopah. Deposits like Lake City and Finlandia are telescoped, but boiling is noted only in those zones of precious metal mineralization, not in the base metal zones.

N. Widespread propylitic alteration (an assemblage of chlorite, pyrite, carbonate, montmorillonite, and illite) is ubiquitous in the districts. Epidote is present in this assemblage at greater depths. The propylitic alteration commonly forms halos hundreds of meters wide around the veins, and usually is wider in the hanging wall than in the

footwall. This alteration is often believed to be pre-ore. Silicified vein walls, and less commonly, adularized or albitized walls, often form a thick selvage around the veins at the ore horizon. This selvage may be tens of meters wide, but commonly is on the order of one meter or less. In many districts silicified or feldspathized vein walls have abundant enough precious metal values to constitute ore. width of the selvage diminishes upward above the ore zones and often disappears completely a few score meters above the ore. Silicification has a much greater vertical extent than do adularization and albitization, often extending above the ore horizon for hundreds of meters, and very commonly extending well below the bottom of the precious metal horizon. Adularized wall rocks occasionally change with depth into adularized and albitized wall rocks. Neither the widespread propylitic alteration nor the more restricted silicification/adularization/albitization serve as very useful ore guides. The former is much too widespread to allow a target to be selected and the latter are usually so narrow as to be found at about the same time as the ore is found. What is needed for the explorationist is an alteration assemblage that is small enough to pinpoint individual targets, is genetically related to the process of ore formation, and extends well above the ore level so that non-outcropping ore shoots can be targeted. Fortunately, such an alteration assemblage exists, as what will be referred to as the low pH assemblage. This assemblage may contain any or all of the following minerals: Alunite, sericite, illite, kaolinite, montmorillonite, or any of the kaolin clay minerals. This alteration, commonly referred to as "bleaching" in the literature, forms a halo around and a cap above individual ore shoots. It is virtually absent below the precious metal horizon (Or, as at Guanajuato, it is absent below the lowest precious metal horizon) and forms a narrow but ever upward-widening halo in the hanging wall around the ore shoot, and expands or "blossoms" above the top of the ore shoot. In those districts studied in detail, the low pH alteration appears to be genetically related to the deposition of the precious metals, but unlike the ore itself, the low pH alteration zone extended to the paleosurface (See Figure 1). At the hot spring orifice on the paleosurface, siliceous sinter and opal are mixed with or forms a cap over alunite and kaolinite (Schoen and others, 1974). These layers often up to scores of meters thick, are believed to be caused by downward percolating sulfuric acid solutions formed by water mixed with oxidized H2S. Beneath these layers are alteration assemblages of illite, adularia, and celadonite as wide halos around the fractures, formed primarily by the loss of CO2 (near surface degassing) resulting in a rise in the K+/H+ ratio. This assemblage passes with depth and toward the fractures into more wellordered white micas, often to a sericite structure. Often at the fracture wall, montmorillonite or kaolimite form an inner alteration halo, widest on the hanging wall of the fracture.

THE MODEL

All of these common characteristics must somehow relate to the process of ore formation. The discussion to follow will offer a model which will unify all of these seemingly disconnected characteristics into a simple genetic model. Figure 1 should be consulted while reading this section.

It has long been suggested that epithermal de-

posits form in convecting water cells (White and others, 1971), where water of largely meteoric origin circulates deeply into a volcanic/sedimentary pile, becomes heated, and dissolves metals, alkalies, chlorides, and sulfur species. Eventually, the now heated but low salinity solution rises through a fracture system and deposits ore and gangue minerals as vein fillings.

Broadlands, New Zealand, is part of such a convection cell. Water at 280°C to 160°C (from depths of 1400 m. to 400 m., respectively), rises up a series of fractures, and gangue, precious metal, and base metal minerals are deposited at various elevations within the fractures. Data presented by Ewers and Keays (1977) indicates that the location of metal deposition is in part a function of the level of boiling of the rising fluids. Most base metals deposit at and below the boiling level, whereas precious metals deposit largely at and above that level. Thus, at the level of boiling, a mixed zone of precious and base metal mineralization occurs. The precious metal content decreases at and below the boiling level, and conversely, the base metal content decreases at and above that level.

It appears that boiling at a particular elevation in a vein system must mark that division between the now well-recognized upper precious metal ore horizon and the deeper base metal ore horizon. This elevation is the same as that district wide bottom of ore shoots mentioned previously, and as well, the boiling level marks the flat bottoms of individual precious metal ore shoots within a particular vein. Obviously, the level of boiling cannot remain constant in space or time: 1) Local irregularities in the paleotopography lead to local elevation differences of the boiling fluid; 2) No geothermal system has uniform isotherms (Ellis and Mahon, 1977) in a horizontal plane, thus warmer solutions in some areas will boil at greater depths than cooler solutions in other areas; 3) Similarly, no geothermal system has uniform isobars (Ellis and Mahon, 1977) in a horizontal plane, thus completely preventing boiling in some areas of the system; 4) Deep selfsealing of the fracture system and its later refracturing can allow boiling at depths much greater than allowed under hydrostatic conditions; and 5) Less commonly, episodic fluctuations in temperature and/or volatile content of the solutions can cause fluctuations in the boiling level. These factors, among others, can cause long vertical intervals of mixed base and precious metal mineralization.

Boiling affects profound change in the physical and chemical state of the fluids:

A. Significant amounts of CO₂ and usually lessor amounts of H₂S are partitioned into the vapor phase, according to the simple reactions:

$$HCO_3^- + H^+ - CO_2(vap.) + H_2O$$

 $HS^- + H^+ - H_2S(vap.)$

This release of volatiles results in a pH rise in the remaining solutions. Data of Drummond and Ohmoto (1979) indicate that a 1 mole NaCl solution at 250°C containing 0.10 mole CO2(aq.) (similar to a typical epithermal fluid), will experience a one unit pH rise by the loss to the vapor phase of approximately 3% of the solution mass. By contrast, simple calculations indicate that at Guanajuato, approximately 24% mass loss to the vapor phase occured.

B. The salinity of the remaining solutions will rise, a result of simple concentration of salts by

the loss of H2O steam.

C. Oxygen fugacity in the remaining liquid increases as the ratios of $\rm CO_2:CH_4$ and $\rm SO_2:H_2S$ increase. $\rm CH_4$ and $\rm H_2S$ have a greater rate of partitioning into the vapor phase than do $\rm CO_2$ and $\rm SO_2$, respectively (Drummond and Ohmoto, 1979).

D. The solution will cool, but much less so than is commonly believed. It is true that the heat of vaporization requires energy to convert water liquid to water steam, but the large thermal reservoir contained by the wall rocks will prevent any major temperature drop in the solutions. As the life of a geothermal system is measured in 10⁴ to 10⁶ years, the already heated rocks will act to buffer the solution temperature.

E. Major loss of CO₂ and lessor loss of H₂S results in a rise in the activity of S^m and HS⁻, thus leading to formation of strong thio complexes with Au, As, Sb, and Hg (Weissberg, 1969). These complexes are stable to near the paleosurface, where the higher oxygen fugacity results in precipitation of the metals.

All of these consequences of boiling combine to promote mineral deposition. Drummond and Ohmoto's study (1979), cited earlier, indicates that most base metals in solution will precipitate after about 5% of the mass of the solution is lost to the vapor phase, but that about 20% of the solution must vaporize before the bulk of the silver will precipitate. As any packet of water will continue to rise as it is boiling, with the water bouyed up by bubbles, the silver will naturally tend to precipitate higher in the vein system than do the base metals. Gold, carried as a thio complex, will not precipitate until nearer the paleosurface in areas of high oxygen fugacity, where the thio complex is destroyed by oxidation to sulfate.

This single phenomena - boiling - explains the vertical zoning of precious metals passing into base metals with depth; as well as explains the early paragenetic position of the base metals so often observed in these deposits. Furthermore, as the pH of the solution rises to the alkaline side, the field of adularia stability is quickly entered, resulting in the association of high precious metal values and high adularia content in the vein. An exception may be those near surface, cool, systems like Goldfield, where the gold is deposited in an acid environment, where clays and/or alunite substitute for the adularia.

But, how can boiling explain the repetitive banding? At Guanajuato, Tayoltita, and Tonopah, studies of fluid inclusion morphology and distribution across individual veins or across individual gangue minerals suggest that the boiling was episodic. There were periods of intense boiling followed by periods of non-boiling or by periods of greatly reduced boiling. Buchanan (1980) has recently documented six major boiling episodes in a single 2.1 cm. wide veinlet at Guanajuato, with each boiling epi-sode accompanied by acanthite and adularia deposition. These boiling episodes were not the result of temperature or chemical fluctuations, and Buchanan (1980) called upon episodic pressure release as the causative mechanism. Episodic drops in the total confining pressure will allow the solutions to boil episodically. This results in the episodic pH rises and precipitation of ore and gangue minerals. As minerals deposit, the thin, near surface veinlets become filled by calcite, zeolites, clays, alunite,

and other minerals, effectively forming a sealed cap to the fracture system. Once sealed, the pressure increases (White and others, 1975), boiling at depth stops, and the pH of the solution drops to normal. Tectonism, or more likely hydrofracturing, can break the sealing cap to allow a second episode of boiling and mineralization, and later seal the system again. In this manner, a repetitively banded vein may result with no necessity to call upon a change in solution chemistry or temperature. Such near-surface self-sealing is well documented in modern geothermal systems (Facca and Tonani, 1967; Keith and others, 1978; Anderson and others, 1978).

The low pH alteration assemblage may also be explained using the boiling mechanism. Upon boiling, CO₂ and H₂S were selectively partitioned into the vapor phase. As these vapors, along with steam, rise to cooler regions nearer the paleosurface, the vapors condense and heat the rocks slightly, or mix with cooler groundwaters, to form a solution of low pH. This solution then attacks rock-forming silicates to form the white micas and/or clay minerals. If the solution is of sufficiently low pH, alunite may form.

IMPLICATIONS OF THE MODEL

Figure 1 illustrates the vertical and horizontal mineral zoning in a typical epithermal district, based upon the data of Table 1 and of the previous discussion. A major implication of the model presented is that epithermal vein deposits do not form under simple hydrostatic conditions. If sealed caps episodically develop a pressure on the system in excess of hydrostatic, then when the cap is fractured and the excess pressure is released, the solutions will boil at a depth greater than allowed under strictly hydrostatic conditions. This deep boiling is only momentary, and the boiling level will gradually rise until hydrostatic conditions prevail. Evidence that epithermal deposits do form at greater than hydrostatic depths is gathered from the data of Table 1, where numerous districts (Oatman, Pachuca, Guanajuato, Goldfield, and Bodie) have a greater vertical ore interval than should be allowed under hydrostatic conditions. As an example, the temperature of the solutions at Bodie would allow a low-salinity solution to begin boiling at a depth of about 330 meters, but the known ore interval is 400 meters. At the present time, there is no certain way to precisely calculate the depth in excess of hydrostatic.

Large concentrations of volatiles in the solutions will also allow boiling at depths greatly in excess of hydrostatic conditions, but few systems appear to contain appreciable volatiles (Rochester and Oatman may be notable exceptions).

APPLICATION OF THE MODEL

.If the model as presented is largely correct, then exploration for deposits unexposed by erosion will be greatly facilitated by mapping of alteration assemblages along otherwise unfilled and barren, or filled and barren structures. Also, the depth to a suspected ore shoot below the present surface may be estimated by noting type and degree of vein filling, by noting alteration grades and intensities, and by fluid inclusion temperature determinations.

As examples of the application of this model to exploration, Figures 2 through 5 are presented il-

lustrating wall rock alteration patterns at Oatman, Arizona, and Guanajuato, Mexico. Also presented in each figure are longitudinal sections of the major veins with outcrops of the low pH alteration assemblage plotted on the profile, and known ore shoots at depth plotted in section. At Oatman, the low pH assemblage is illite and montmorillonite; at Guanajuato, it is kaolinite and halloysite adjacent to the fractures, passing outward into sericite, illite, and montmorillonite. Note that in both districts only a small percentage of ore shoots cropped out. Also note that the size of the low pH alteration assemblage is crudely proportional to that of the underlying ore shoot.

The data presented in Table 1 suggests that similar maps should be made for many districts in North America, and that many ore discoveries will likely result.

This author does not wish to imply that boiling is the only explanation for many of the features of epithermal deposits, but boiling does offer a genetic mechanism whereby most observable features may be connected. However, as an "orebody" by its very definition is an anomaly, it should not be unexpected that some deposits will vary drastically from this model of a typical system, nor should it be surprising that all deposits will vary in some degree from the model.

REFERENCES CITED

Albers, J. P., and Kleinhampl, F. J., 1970, Spatial relation of mineral deposits to Tertiary volcanic centers in Nevada: U. S. Geol. Survey Prof. Paper 700-C, p. C1-C10.
Albinson, T., 1978, Fluid inclusion studies of the

Albinson, T., 1978, Fluid inclusion studies of the Tayoltita mine and related areas, Durango, Mexico: Unpub. Ms. thesis, Univ. of Minn., 91 pp.

Anderson, L. W., Anderegg, J. W., and Lawler, J. E., 1978, Model geysers: Amer. Jour. Sci., v. 278, p. 725-738.

Anonymous, 1980, Sunshine steps up production for Sixteen-to-one mine: Mining Record, v. 91, no. 39, p. 10-11.

Antunez E., F., 1964, Monografia historica y minera sobre el Distrito de Guanajuato: Consejo Recursos Naturales No Renovables Pub. 17E, 589 pp.

Archbold, N. L., and Blomquist, J. T., 1969, unpub. field notes and maps, 7 pp.

Bailey, C. E., 1931, On mining properties located at San Jose de Las Cruces, Chihuahua: Unpub. pri.

rpt., 6 pp.
Ball, S. H., 1906, Notes on ore deposits of southwestern Nevada and eastern California: U. S.
Geol. Survey Bull. 285, p. 53-73.

Bancroft, H., 1914, The ore deposits of northeastern Washington: U. S. Geol. Survey Bull. 550, 215 pp. Bastin, E. S., 1923, Bonanza ores of the Comstock Lode, Virginia City, Nevada: U. S. Geol. Survey Bull. 735, p. 41-63.

Berger, B. R., 1980, Exploration guidelines for disseminated gold deposits - the moly connection: Notes from verbal presentation before Denver Regional Exploration Geologists' Society, 12 May.

Bonham, H. F., 1969, Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nev. Bur. Mines Bull. 70, 140 pp.

, and Garside, L. J., 1979, Tonopah Mining District and vicinity: Nev. Bur. Mines Geol. Rpt. 19, Univ. Nev., Reno, p. 42-48.

Brocum, A. V., 1971, Paragenesis and fluid inclusions of the Tayoltita Ag-Au bearing quartz vein

deposit, Durango, Mexico: Unpub. Ms. thesis, Columbia Univ.

Brooks, J. H., 1970, Gold deposits of Golden Plateau, in Geology of Australian Ore Deposits: 8th. Commonwealth Mining Metall. Cong., v. 1, p. 361-363.

Buchanan, L. J., 1980, Ore controls of vertically stacked deposits, Guanajuato, Mexico: Amer. Inst. Mining Metall. Engineers Preprint 80-82, 26 pp.

Burbank, W. S., and Luedke, R. G., 1969, Geology and ore deposits of the Eureka and adjoining districts, San Juan Mountains, Colorado: U. S. Geol. Survey Prof. Paper 535, 73 pp.

Burgess, J. A., 1909, The geology of the producing part of the Tonopah mining district: Econ. Geol., v. 4, no. 8, p. 681-712.

, 1914, Report on the Atlas Wonder Mine at Hercules, Wonder mining district, Wonder, Nevada: Unpub. pri. rpt., 9 pp.

Butler, B. S., Loughlin, G. F., and Heikes, V. C., 1920, The ore deposits of Utah: U. S. Geol. Survey Prof. Paper 111, 672 pp.

Callaghan, E., 1939, Geology of the Searchlight district, Clark County, Nevada: U. S. Geol. Survey Bull. 906-D, p. 135-188.

Cardenas, S., and Martinez, F., 1947, Los yacimientos argentiferos de Temascaltepec, Estado de Mexico: Comite Direct. Invest. de Los Recursos Min. de Mex., Bol. 12, 28 pp.

Carpenter, J. A., 1919, The Divide district: Eng.

Min. Jour., v. 107, no. 20, p. 859-861. Casadevall, T., Ohmoto, H., 1977, Sunnyside mine, Eureka mining district, San Juan County, Colorado: Geochemistry of gold and base metal ore deposition in a volcanic environment: Econ. Geol., v. 72, p. 1285-1320.

Clark, K. F., Dow, R. R., and Knowling, R. D., 1979, Fissure vein deposits related to continental volcanic and subvolcanic terranes in Sierra Madre Occidental Province, Mexico: IAGOD 5th. Symp., J. D. Ridge, editor, Nev. Bur. Mines Geol. Rpt. 33, p. 189-201.

Clifton, C. G., Buchanan, L. J., and Durning, W. P., 1980, Exploration procedure and controls of mineralization in the Oatman Mining District, Oatman, Arizona: Amer. Inst. Mining Metall. Engineers Preprint 80-143, 17 pp., 24 figs.

Cornwall, H. R., Kleinhample, F. J., 1964, Geology of the Bullfrog Quadrangle and ore deposits related to the Bullfrog Hills Caldera, Nye County, Nevada, and Inyo County, California: U. S. Geol. Survey Prof. Paper 454-J, 25 pp.

Couch, B. F., and Carpenter, J. A., 1943, Nevada's metal and mineral production: Univ. Nev. Bull., v. 37, no. 4, 159 pp.

De Cserna, Z., 1976, Geology of the Fresnillo area, Zacatecas, Mexico: Geol. Soc. Amer. Bull., v. 87, p. 1191-1199.

Douglas, H., 1951, Geology of the Namiquipa mine, Namiquipa, Chihuahua, Mexico: Unpub. Ms. thesis, Columbia Univ., 37 pp.

Dow, R. R., 1978, The geology and mineralization of the Tovar mining district, Tepehuanes Municipality, Durango, Mexico: Unpub. Ms. thesis, Univ. Iowa, 139 pp.

Dreier, J. E., 1976, The distribution of wall rock alteration and trace elements in the Pachuca-Real de Monte district, Hidalgo, Mexico: Amer. Inst. Mining Metall. Engineers Preprint 18-L-37, 14 pp.

Drummond, S. E., Ohmoto, H., 1979, Effects of boiling on mineral solubilities in hydrothermal solutions: (abstract) Geol. Soc. Amer. 92nd. Ann. Mtg., San Diego, p. 416.

Durning, W. P., 1978, Guanacevi-San Pedro mining districts, Durango, Mexico: Unpub. pri. rpt., 39 pp.

Ellis, A. J., and Mahon, W. A. J., 1977, Chemistry and Geothermal Systems: Academic Press, New York, 392 pp.

Emmons, W. H., 1937, Gold Deposits of the World: McGraw Hill Book Co., New York, p. 183, p. 244-247, p. 470-471.

Ewers, G. R., and Keays, R. R., 1977, Volatile and precious metal zoning in the Broadlands geothermal field, New Zealand: Econ. Geol., v. 72, no. 7, p. 1337-1354.

Facca, G., and Tonani, F., 1967, The self-sealing geothermal fields: Bull. Volcanol., v. 30, p. 271. Ferguson, H. G., 1921, The Mogollon district, New Mexico: U. S. Geol. Survey Bull. 715, p. 171-204.

, 1927, The Round Mountain district, Nevada: U. S. Geol. Survey Bull. 725, p. 383-406. , 1928, The Gilbert district, Nevada: U. S. Geol. Survey Bull. 795-F, p. 125-145.

Francisco, G., 1979, Importancia geologica y poten-cial de las vetas de rumbo noroeste en el distrito minero Zacualpan, Estado de Mexico: Unpub. pri. rpt., 33 pp.

Friedrich, G. H., and Hawkes, H. E., 1966, Mercury as an ore guide in the Pachuca-Real del Monte district, Hidalgo, Mexico: Econ. Geol., v. 61, p. 744-753.

Full, R. P., and Grantham, R. M., 1968, Ore deposits of the Republic mining district, Ferry County, Washington; in Ore Deposits of the United States, J. D. Ridge, editor: New York, Amer. Inst. Mining Metall. Eng., p. 1481-1494.

Gardner, E. D., 1936, Gold mining and milling in the Black Mountains, western Mohave County, Arizona: U. S. Bur. Mines Inf. Circ. 6901, 59 pp.

Geyne, H. R., Fries, C., Jr., Segerstrom, K., Black, R. F., and Wilson, I. F., 1963, Geology and mineral deposits of the Pachuca-Real del Monte district, State of Hidalgo, Mexico: Consejo de Rec. Nat. No Renovables Pub. 5E, 203 pp.

Granger, A. E., Bell, M. M., and Simmons, G. C., 1957, Geology and mineral resources of Elko County, Nevada: Nev. Bur. Mines Bull. 54, 190 pp. Gross, W. H., 1975, New ore discovery and source of

silver-gold veins, Guanajuato, Mexico: Econ. Geol., v. 70, no. 7, p. 1175-1189.

Hall, C. W., 1926, Geology of the Yoquivo, Chihushua, mining district: Paper presented Feb., 1926, to New York meeting of Amer. Inst. Mining Metall. Engineers, 15 pp.

Halpern, J. B., 1939, Mineralization at Guanacevi, Durango, Mexico: Unpub. Ms. thesis, Columbia Univ., 52 pp.

Hawxhurst, R., 1921, The Piz Piz gold district, Nicaragua: Min. Sci. Press, March 12, p. 353-360. Henderson, H. P., 1923, Report on the Katherine mine,

Mohave County, Arizona: Unpub. pri. rpt., 17 pp, maps, sections.

Jackson, D., 1974, Homestakes hard work pays off at Bulldog Mountain mine: Eng. Min. Jour., May, p. 65-70.

Joralemon, I., 1925, Katherine Gold Mining Co., Py-

ramid property: Unpub. pri. rpt., 3 pp. Kamilli, R. J., and Ohmoto, H., 1977, Paragenesis, zoning, fluid inclusion, and isotopic studies of the Finlandia vein, Colqui, Central Peru: Econ. Geol., v. 72, no. 6, p. 950-982.

Keckler, D., 1980, Geology and ore deposits of the Seven Troughs mining district, Pershing County, Nevada: Unpub. report, 14 pp.

Keith, T. E. C., White, D. E., Beeson, M. H., 1978, Hydrothermal alteration and self-sealing in Y-7 and Y-8 drill holes in northern part of Upper Geyser Basin, Yellowstone National Park, Wyoming: U. S. Geol. Survey Prof. Paper 1054-A, 26 pp.
Knopf, A., 1921, The Divide silver district, Nevada:
U. S. Geol. Survey Bull. 715, p. 147-170.

, 1922, Ore deposits of Cedar Mountain, Mineral County, Nevada: U. S. Geol. Survey Bull. 725, p. 361-382.

Rochester district, Nevada: U. S. Geol. Survey Bull. 762, 78 pp.

Knowling, R. D., 1977, The geology and ore deposits of the Ocampo District, Municipio de Ocampo, Chihuahua, Mexico: Unpub. Ms. thesis, Univ. Iowa, 167 pp.

Koschmann, A. H., and Bergendahl, M. H., 1968, Principal gold-producing districts of the United States: U. S. Geol. Survey Prof. Paper 610, 283 pp.

Langston, D., 1979, The geology and geochemistry of the north-easterly gold veins, Sunnyside Mine, San Juan County, Colorado: Unpub. Ms. thesis, Colo. School of Mines, 163 pp.

Lewis, F. W., 1966?, Notes on the Nevada Wonder Mine: Unpub. rpt., 5 pp.

Lindgren, W., 1915, Geology and mineral deposits of the National mining district, Nevada: U. S. Geol. Survey Bull. 601, 58 pp.

Linton, R., 1912, Geology of Ocampo district, Mexico: Eng. Min. Jour., Oct. 5, p. 653-655.

Locke, A., 1913, The geology of the El Oro and Tlalpujahua mining districts, Mexico: Unpub. Ph.D. disser., Harvard Univ., 100 pp.

MacDonald, D. F., 1908, Notes on the Bohemia mining district, Oregon: U. S. Geol. Survey Bull. 380, p. 80-84.

Mishler, R. T., 1923, Preliminary report on the Jesus Maria y Anexas and neighboring properties, San Jose de Gracia, Sinaloa, Mexico: Unpub. pri. rpt., 11 pp.

Muessig, S., 1967, Geology of the Republic Quadrangle and a part of the Aeneas Quadrangle, Ferry County, Washington: U. S. Geol. Survey Bull. 1216, 135 pp.

Nolan, T. B., 1935, The underground geology of the Tonopah mining district, Nevada: Univ. Nev. Bull. v. 29, no. 5, 49 pp.

Ojeda, J., and Mapes, E., 1963, Reconocimiento geologico minero del area de Cinco Minas, Jalisco: Consej. Recursos Nat. No Renovables Bol. 58, 53 pp.

Ordonez, G., 1973, Algunos yacimientos minerales de la Republica Mexicana: Amer. Inst. Mining Metall. Eng., Secc. Mex., Comite Tech., 291 pp.

Packard, G. A., 1907, Round Mountain Camp, Nevada: Eng. Min. Jour., Jan. 19, p. 150-151.

Panze, A. J., 1971, Geology and ore deposits of the Silver City-Delamar-Flint region, Owyhee County, Idaho: Unpub. Ph.D. disser., Colo. School of Mines, 151 pp.

Petersen, U., Noble, D. C., Arenas, M. J., and Goodell, P. C., 1977, Geology of the Julcani mining district, Peru: Econ. Geol., v. 72, no. 6, p. 931-949.

Pickard, G. W., 1970, Geology of the Prieta Mine, Parral, Chihuahua: Amer. Inst. Mining Metall. Eng. World Symp. on Mining & Metall. of Pb and Zn, v. 1, p. 123-129.

Piper, A. M., and Laney, F. B., 1926, Geology and metalliferous resources of the region about Silver City, Idaho: Ida. Bur. Mines Geol. Bull. 11, 165 pp.

Proctor, P. D., and Doraibabu, P., 1977, Petrographic

and petrochemical features of a productive stock, Searchlight, Nevada: Econ. Geol., v. 72, no. 4, p. 735.

Ramsay, W. R. H., and Kobe, H. W., 1974, Great Barrier Island silver-gold deposits, Huaraki Province, New Zealand: Min. Depositae, v. 9, no. 2.

Ransome, F. L., 1909, The geology and ore deposits of Goldfield, Nevada: U. S. Geol. Survey Prof. Paper 66, 258 pp.

, 1909, Notes on some mining districts in Humboldt County, Nevada: U. S. Geol. Survey Bull. 414, p. 14-24.

, 1923, Geology of the Oatman gold district: U. S. Geol. Survey Bull. 743, 58 pp.

, Emmons, W. H., and Garrey, G. H., 1910, Geology and ore deposits of the Bullfrog district, Nevada: U. S. Geol. Survey Bull. 407, 130 pp.

Roberts, R. J., Montgomery, K. M., and Lehner, R. E., 1967, Geology and mineral deposits of Eureka County, Nevada: Nev. Bur. Mines Geol. Bull. 64, 152 pp.

, Radtke, A. S., and Coats, R. R., 1971, Gold bearing deposits in north-central Nevada and southwestern Idaho: Econ. Geol., v. 66, p. 14-33.

Rogers, A. F., 1911, Orthoclase-bearing veins from Rawhide, Nevada, and Weehawken, New Jersey: Econ. Geol., p. 790-798.

Ross, D. C., 1961, Geology and mineral deposits of Mineral County, Nevada: Nev. Bur. Mines Geol. Bull. 58, 98 pp.

Rott, E. H., 1931, Ore deposits of the Gold Circle Mining District, Elko County, Nevada: Nev. Univ. Bull., v. 25, no. 5, 30 pp.

Sawkins, F. J., 1980, Single-stage versus two-sta ore deposition in subduction-related volcanoplutonic arcs: Proc. 5th. IAGOD Symp., Stuttgart, Germany, p. 143-154.

Scherkenbach, D. A., and Noble, D. C., 1978, Potassium metasomatism as a guide to base- and precious-metal mineralization at the Julcani district, central Peru: Proc. 5th. IAGOD Symp., Stuttgart, Germany, p. 164.

Schmitt, H., 1929, Extension of oreshoots with comments on the art of ore finding: Amer. Inst. Mining Metall. Eng. Trans., v. 21, p. 318-324.

Schoen, R., White, D. E., Hemley, J. J., 1974, Argillization by descending acid at Steamboat Springs, Nevada: Clays & Clay Minerals, v. 22, p. 1-22.

Schrader, F. C., 1909, Mineral deposits of the Cerbat Range, Black Mountains, and Grand Wash Cliffs, Mohave County, Arizona: U. S. Geol. Survey Bull. 397, 226 pp.

, 1912, A reconnaissance of the Jarbidge, Contact, and Elk Mountain mining districts, Elko County, Nevada: U. S. Geol. Survey Bull. 497, 162 pp.

Schroter, G. A., 1935, A geologist visits the Mohave mining district: Eng. Min. Jour., v. 136, no. 4, p. 185-188.

Shefelbine, G. H., 1957, Silver-lead-zinc mines at Namiquipa, Chihuahua, Mexico: Min. Eng., Oct., p. 1090-1097.

Silberman, M. L., and McKee, E. H., 1974, Ages of Tertiary volcanic rocks and hydrothermal precious metal deposits in central and western Nevada: Nev. Bur. Mines Rpt. 19, p. 67-72.

, McKee, E. H., and Stewart, J. H., 1976, Igneous activity, tectonics, and hydrothermal precious-metal mineralization in the Great Basin during Cenozoic time: Amer. Inst. Mining

Metall. Eng. Preprint 76-I-102, 31 pp. Sirdevan, W. H., 1913, Report on the Rex Mine, Gold

Circle district, Nevada: Unpub. pri. rpt., 6 pp. Slack, J. F., and Lipman, P. W., 1978, Chronology of alteration, mineralization, and caldera evolution in the Lake City area, western San Juan Mountains, Colorado: Proc. 5th IAGOD Symp., Stuttgart, Germany, p. 174.

, 1980, Multistage vein ores of the Lake City district, western San Juan Mountains, Colorado: Econ. Geol., v. 75, no. 7, p. 963-991.

Smith, D. M., 1974, Geology of the Tayoltita Mine, Durango, Mexico: Amer. Inst. Mining Metall. Eng. Preprint 74-I-308, 48 pp.

, Albinson, T., Sawkins, F. J., 1979, Geologic and fluid inclusion studies of the Tayoltita silver-gold vein deposit, Durango, Mexico: Unpub. pri. rpt., 27 pp.

Spurr, J. E., 1905, Geology of the Tonopah mining district, Nevada: U. S. Geol. Survey Prof. Paper 42, 295 pp.

, 1913, Abstract of numerous unpub. pri. rpts., 6 pp.

Steven, T. A., and Ratte, J. C., 1960, Geology and ore deposits of the Summitville district, San Juan Mountains, Colorado: U. S. Geol. Survey Prof. Paper 343, 70 pp.
Taber, J. W., 1949, A reconnaissance of lode mines

and prospects in the Bohemia mining district, Lane and Douglas counties, Oregon: U. S. Bur. Mines

Inf. Circ. 7512, 50 pp. 1 Taylor, H. P., 1973, 0¹⁸/0¹⁶ evidence for meteorichydrothermal alteration and ore deposition in the Tonopah, Comstock Lode, and Goldfield mining districts, Nevada: Econ. Geol., v. 68, no. 6, p. 747-764.

Terrones, A., 1922, The camp of Guanacevi: Eng. Min.

Jour., July 22, p. 139-144. Thornburg, C. L., 1951, The surface expression of veins in the Pachuca silver district of Mexico: Trans. Amer. Inst. Min. Metall. Eng. Tech. Paper 33151, June, 1952, p. 594-600.

Tolman, C. F., and Ambrose, J. W., 1934, The rich ores of Goldfield, Nevada: Econ. Geol., v. 29, p. 255-279.

Turner, D., 1978, Some other mining districts and camps in Chihuahua, in Ore Deposits of Chihuahua, L. J. Buchanan, editor, Colo. School of Mines

Departmental Rpt., p. 89-102. Umpleby, J. B., 1910, Geology and ore deposits of Republic mining district: Wash. Geol. Survey Bull. 550, 215 pp.

Vikre, P. G., 1978, Geology and silver mineralization of the Rochester district, Pershing County, Nevada: Unpub. Ph.D. disser., Stanford, 404 pp.

Weissberg, B. G., 1969, Gold-silver ore-grade precipitates from New Zealand thermal waters: Econ. Geol., v. 64, p. 95-108.

, and Wodzicki, A., 1970, Geochemistry of hydrothermal alteration and origin of sulfide mineralization at the Tui Mine, Te Aroha, New Zealand: New Zealand Jour. Sci., v. 13, no. 1, p. 36-60.

Wetlaufer, P. H., Bethke, P. M., Barton, P. B., Steven, T. A., and Ratte, J. C., 1965, Geology and structural control of ore deposition in the Creede district, southern San Juan Mountains, Colorado: U. S. Geol. Survey Prof. Paper 487, 90 pp.

White, D. H., Muffler, L. J. P., and Truesdell, A. H., 1971, Vapor-dominated hydrothermal systems compared with hot-water systems: Econ. Geol., v. 66, p. 75-97.

White, D. H., 1974, Diverse origins of hydrothermal ore fluids: Econ. Geol., v. 69, no. 6, p. 954973.

White, D. H., Fournier, R. O., Muffler, L. J. P., and Truesdell, A. H., 1975, Physical results of research drilling in thermal areas of Yellowstone National Park, Wyoming: U. S. Geol. Survey Prof. Paper 892, 70 pp.

Whitebread, D. H., 1976, Alteration and geochemistry of Tertiary volcanic rocks in parts of the Virginia City Quadrangle, Nevada: U. S. Geol. Sur-

vey Prof. Paper 936, 43 pp.

Willden, R., and Speed, R. C., 1974, Geology and mineral deposits of Churchill County, Nevada: Nev. Bur. Mines Geol. Bull. 83, 95 pp.

Wilson, P. D., 1959, Temascaltepec Mines, Cia. Minera Ancimilco, S.A.: Unpub. pri. rpt., 5 pp.

Winchell, A. N., 1912, Geology of the National mining district, Nevada: Min. Sci. Press, Nov. 23, p. 655-659.

Wisser, E., 1966, The epithermal precious-metal province of northwest Mexico: Nev. Bur. Mines Rpt. 13, Part C, p. 63-92.

, 1966, Hydrothermal alteration as a guide to epithermal ore bodies: Unpub. pri. rpt., 11 pp.